文章详情

  • 游戏榜单
  • 软件榜单
关闭导航
热搜榜
热门下载
热门标签
php爱好者> php教程>Redis中必须要掌握的20个问题,快来收藏吧!!

Redis中必须要掌握的20个问题,快来收藏吧!!

时间:2021-10-27  来源:互联网

今天PHP爱好者为您带来本篇文章给大家分享20个必知必会、必须要掌握的Redis问题,希望对大家有所帮助,快来收藏吧!希望对大家有所帮助。

Redis是什么?

Redis(Remote Dictionary Server)是一个使用 C 语言编写的,高性能非关系型的键值对数据库。与传统数据库不同的是,Redis 的数据是存在内存中的,所以读写速度非常快,被广泛应用于缓存方向。Redis可以将数据写入磁盘中,保证了数据的安全不丢失,而且Redis的操作是原子性的。

Redis的优点?

  • 基于内存操作,内存读写速度快。

  • Redis是单线程的,避免线程切换开销及多线程的竞争问题。单线程是指网络请求使用一个线程来处理,即一个线程处理所有网络请求,Redis 运行时不止有一个线程,比如数据持久化的过程会另起线程。

  • 支持多种数据类型,包括String、Hash、List、Set、ZSet等。

  • 支持持久化。Redis支持RDB和AOF两种持久化机制,持久化功能可以有效地避免数据丢失问题。

  • 支持事务。Redis的所有操作都是原子性的,同时Redis还支持对几个操作合并后的原子性执行。

  • 支持主从复制。主节点会自动将数据同步到从节点,可以进行读写分离。

Redis为什么这么快?

  • 基于内存:Redis是使用内存存储,没有磁盘IO上的开销。数据存在内存中,读写速度快。

  • 单线程实现( Redis 6.0以前):Redis使用单个线程处理请求,避免了多个线程之间线程切换和锁资源争用的开销。

  • IO多路复用模型:Redis 采用 IO 多路复用技术。Redis 使用单线程来轮询描述符,将数据库的操作都转换成了事件,不在网络I/O上浪费过多的时间。

  • 高效的数据结构:Redis 每种数据类型底层都做了优化,目的就是为了追求更快的速度。

Redis为何选择单线程?

  • 避免过多的上下文切换开销。程序始终运行在进程中单个线程内,没有多线程切换的场景。

  • 避免同步机制的开销:如果 Redis选择多线程模型,需要考虑数据同步的问题,则必然会引入某些同步机制,会导致在操作数据过程中带来更多的开销,增加程序复杂度的同时还会降低性能。

  • 实现简单,方便维护:如果 Redis使用多线程模式,那么所有的底层数据结构的设计都必须考虑线程安全问题,那么 Redis 的实现将会变得更加复杂。

Redis应用场景有哪些?

  • 缓存热点数据,缓解数据库的压力。

  • 利用 Redis 原子性的自增操作,可以实现计数器的功能,比如统计用户点赞数、用户访问数等。

  • 简单的消息队列,可以使用Redis自身的发布/订阅模式或者List来实现简单的消息队列,实现异步操作。

  • 限速器,可用于限制某个用户访问某个接口的频率,比如秒杀场景用于防止用户快速点击带来不必要的压力。

  • 好友关系,利用集合的一些命令,比如交集、并集、差集等,实现共同好友、共同爱好之类的功能。

Memcached和Redis的区别?

  • Redis 只使用单核,而 Memcached 可以使用多核。

  • MemCached 数据结构单一,仅用来缓存数据,而 Redis 支持多种数据类型

  • MemCached 不支持数据持久化,重启后数据会消失。Redis 支持数据持久化

  • Redis 提供主从同步机制和 cluster 集群部署能力,能够提供高可用服务。Memcached 没有提供原生的集群模式,需要依靠客户端实现往集群中分片写入数据。

  • Redis 的速度比 Memcached 快很多。

  • Redis 使用单线程的多路 IO 复用模型,Memcached使用多线程的非阻塞 IO 模型。

Redis 数据类型有哪些?

基本数据类型

1、String:最常用的一种数据类型,String类型的值可以是字符串、数字或者二进制,但值最大不能超过512MB。

2、Hash:Hash 是一个键值对集合。

3、Set:无序去重的集合。Set 提供了交集、并集等方法,对于实现共同好友、共同关注等功能特别方便。

4、List:有序可重复的集合,底层是依赖双向链表实现的。

5、SortedSet(ZSet):有序Set。内部维护了一个score的参数来实现。适用于排行榜和带权重的消息队列等场景。

特殊的数据类型

1、Bitmap:位图,可以认为是一个以位为单位数组,数组中的每个单元只能存0或者1,数组的下标在 Bitmap 中叫做偏移量。Bitmap的长度与集合中元素个数无关,而是与基数的上限有关。

2、Hyperloglog。HyperLogLog 是用来做基数统计的算法,其优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。典型的使用场景是统计独立访客。

3、Geospatial :主要用于存储地理位置信息,并对存储的信息进行操作,适用场景如定位、附近的人等。

Redis事务

事务的原理是将一个事务范围内的若干命令发送给 Redis,然后再让 Redis 依次执行这些命令。

事务的生命周期:

  • 使用MULTI开启一个事务;

  • 在开启事务的时候,每次操作的命令将会被插入到一个队列中,同时这个命令并不会被真正执行;

  • EXEC命令进行提交事务。

r01.png

一个事务范围内某个命令出错不会影响其他命令的执行,不保证原子性:

first:0>MULTI
"OK"
first:0>set a 1
"QUEUED"
first:0>set b 2 3 4
"QUEUED"
first:0>set c 6
"QUEUED"
first:0>EXEC
1) "OK"
2) "OK"
3) "OK"
4) "ERR syntax error"
5) "OK"
6) "OK"
7) "OK"

WATCH命令

WATCH命令可以监控一个或多个键,一旦其中有一个键被修改,之后的事务就不会执行(类似于乐观锁)。执行EXEC命令之后,就会自动取消监控。

first:0>watch name
"OK"
first:0>set name 1
"OK"
first:0>MULTI
"OK"
first:0>set name 2
"QUEUED"
first:0>set gender 1
"QUEUED"
first:0>EXEC
(nil)
first:0>get gender
(nil)

比如上面的代码中:

  1. watch name开启了对name这个key的监控

  2. 修改name的值

  3. 开启事务a

  4. 在事务a中设置了namegender的值

  5. 使用EXEC命令进提交事务

  6. 使用命令get gender发现不存在,即事务a没有执行

使用UNWATCH可以取消WATCH命令对key的监控,所有监控锁将会被取消。

持久化机制

持久化就是把内存的数据写到磁盘中,防止服务宕机导致内存数据丢失。

Redis支持两种方式的持久化,一种是RDB的方式,一种是AOF的方式。前者会根据指定的规则定时将内存中的数据存储在硬盘上,而后者在每次执行完命令后将命令记录下来。一般将两者结合使用。

RDB方式

RDB是 Redis 默认的持久化方案。RDB持久化时会将内存中的数据写入到磁盘中,在指定目录下生成一个dump.rdb文件。Redis 重启会加载dump.rdb文件恢复数据。

bgsave是主流的触发 RDB 持久化的方式,执行过程如下:

1.png

  • 执行BGSAVE命令

  • Redis 父进程判断当前是否存在正在执行的子进程,如果存在,BGSAVE命令直接返回。

  • 父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞。

  • 父进程fork完成后,父进程继续接收并处理客户端的请求,而子进程开始将内存中的数据写进硬盘的临时文件

  • 当子进程写完所有数据后会用该临时文件替换旧的 RDB 文件

Redis启动时会读取RDB快照文件,将数据从硬盘载入内存。通过 RDB 方式的持久化,一旦Redis异常退出,就会丢失最近一次持久化以后更改的数据。

触发 RDB 持久化的方式:

  1. 手动触发:用户执行SAVEBGSAVE命令。SAVE命令执行快照的过程会阻塞所有客户端的请求,应避免在生产环境使用此命令。BGSAVE命令可以在后台异步进行快照操作,快照的同时服务器还可以继续响应客户端的请求,因此需要手动执行快照时推荐使用BGSAVE命令。

  2. 被动触发


    • 根据配置规则进行自动快照,如SAVE 100 10,100秒内至少有10个键被修改则进行快照。

    • 如果从节点执行全量复制操作,主节点会自动执行BGSAVE生成 RDB 文件并发送给从节点。

    • 默认情况下执行shutdown命令时,如果没有开启 AOF 持久化功能则自动执行·BGSAVE·。

优点

  • Redis 加载 RDB 恢复数据远远快于 AOF 的方式

  • 使用单独子进程来进行持久化,主进程不会进行任何 IO 操作,保证了 Redis 的高性能

缺点

  • RDB方式数据无法做到实时持久化。因为BGSAVE每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本比较高。

  • RDB 文件使用特定二进制格式保存,Redis 版本升级过程中有多个格式的 RDB 版本,存在老版本 Redis 无法兼容新版 RDB 格式的问题

AOF方式

AOF(append only file)持久化:以独立日志的方式记录每次写命令,Redis重启时会重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,AOF 是Redis持久化的主流方式。

默认情况下Redis没有开启AOF方式的持久化,可以通过appendonly参数启用:appendonly yes。开启AOF方式持久化后每执行一条写命令,Redis就会将该命令写进aof_buf缓冲区,AOF缓冲区根据对应的策略向硬盘做同步操作。

默认情况下系统每30秒会执行一次同步操作。为了防止缓冲区数据丢失,可以在Redis写入AOF文件后主动要求系统将缓冲区数据同步到硬盘上。可以通过appendfsync参数设置同步的时机。

appendfsync always //每次写入aof文件都会执行同步,最安全最慢,不建议配置
appendfsync everysec  //既保证性能也保证安全,建议配置
appendfsync no //由操作系统决定何时进行同步操作

接下来看一下 AOF 持久化执行流程:

2.png

  • 所有的写入命令会追加到 AOP 缓冲区中。

  • AOF 缓冲区根据对应的策略向硬盘同步。

  • 随着 AOF 文件越来越大,需要定期对 AOF 文件进行重写,达到压缩文件体积的目的。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。

  • 当 Redis 服务器重启时,可以加载 AOF 文件进行数据恢复。

优点

  • AOF可以更好的保护数据不丢失,可以配置 AOF 每秒执行一次fsync操作,如果Redis进程挂掉,最多丢失1秒的数据。

  • AOF以append-only的模式写入,所以没有磁盘寻址的开销,写入性能非常高。

缺点

  • 对于同一份文件AOF文件比RDB数据快照要大。

  • 数据恢复比较慢。

主从复制

Redis的复制功能是支持多个数据库之间的数据同步。主数据库可以进行读写操作,当主数据库的数据发生变化时会自动将数据同步到从数据库。从数据库一般是只读的,它会接收主数据库同步过来的数据。一个主数据库可以有多个从数据库,而一个从数据库只能有一个主数据库。

//启动Redis实例作为主数据库
redis-server  
//启动另一个实例作为从数据库
redis-server --port 6380 --slaveof  127.0.0.1 6379  
slaveof 127.0.0.1 6379
//停止接收其他数据库的同步并转化为主数据库
SLAVEOF NO ONE

主从复制的原理?

  • 当启动一个从节点时,它会发送一个 PSYNC 命令给主节点;

  • 如果是从节点初次连接到主节点,那么会触发一次全量复制。此时主节点会启动一个后台线程,开始生成一份 RDB 快照文件;

  • 同时还会将从客户端 client 新收到的所有写命令缓存在内存中。RDB 文件生成完毕后, 主节点会将RDB文件发送给从节点,从节点会先将RDB文件写入本地磁盘,然后再从本地磁盘加载到内存中

  • 接着主节点会将内存中缓存的写命令发送到从节点,从节点同步这些数据;

  • 如果从节点跟主节点之间网络出现故障,连接断开了,会自动重连,连接之后主节点仅会将部分缺失的数据同步给从节点。

哨兵Sentinel

主从复制存在不能自动故障转移、达不到高可用的问题。哨兵模式解决了这些问题。通过哨兵机制可以自动切换主从节点。

客户端连接Redis的时候,先连接哨兵,哨兵会告诉客户端Redis主节点的地址,然后客户端连接上Redis并进行后续的操作。当主节点宕机的时候,哨兵监测到主节点宕机,会重新推选出某个表现良好的从节点成为新的主节点,然后通过发布订阅模式通知其他的从服务器,让它们切换主机。

3.png

工作原理

  • 每个Sentinel以每秒钟一次的频率向它所知道的MasterSlave以及其他 Sentinel实例发送一个 PING命令。

  • 如果一个实例距离最后一次有效回复 PING 命令的时间超过指定值, 则这个实例会被 Sentine 标记为主观下线。

  • 如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel要以每秒一次的频率确认Master是否真正进入主观下线状态。

  • 当有足够数量的 Sentinel(大于等于配置文件指定值)在指定的时间范围内确认Master的确进入了主观下线状态, 则Master会被标记为客观下线 。若没有足够数量的 Sentinel同意 Master 已经下线, Master 的客观下线状态就会被解除。若 Master重新向 SentinelPING 命令返回有效回复, Master 的主观下线状态就会被移除。

  • 哨兵节点会选举出哨兵 leader,负责故障转移的工作。

  • 哨兵 leader 会推选出某个表现良好的从节点成为新的主节点,然后通知其他从节点更新主节点信息。

Redis cluster

哨兵模式解决了主从复制不能自动故障转移、达不到高可用的问题,但还是存在主节点的写能力、容量受限于单机配置的问题。而cluster模式实现了Redis的分布式存储,每个节点存储不同的内容,解决主节点的写能力、容量受限于单机配置的问题。

Redis cluster集群节点最小配置6个节点以上(3主3从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。

Redis cluster采用虚拟槽分区,所有的键根据哈希函数映射到0~16383个整数槽内,每个节点负责维护一部分槽以及槽所映射的键值数据。

4.png

哈希槽是如何映射到 Redis 实例上的?

  • 对键值对的key使用 crc16 算法计算一个结果

  • 将结果对 16384 取余,得到的值表示 key 对应的哈希槽

  • 根据该槽信息定位到对应的实例

优点:

  • 无中心架构,支持动态扩容;

  • 数据按照slot存储分布在多个节点,节点间数据共享,可动态调整数据分布

  • 高可用性。部分节点不可用时,集群仍可用。集群模式能够实现自动故障转移(failover),节点之间通过gossip协议交换状态信息,用投票机制完成SlaveMaster的角色转换。

缺点:

  • 不支持批量操作(pipeline)。

  • 数据通过异步复制,不保证数据的强一致性

  • 事务操作支持有限,只支持多key在同一节点上的事务操作,当多个key分布于不同的节点上时无法使用事务功能。

  • key作为数据分区的最小粒度,不能将一个很大的键值对象如hashlist等映射到不同的节点。

  • 不支持多数据库空间,单机下的Redis可以支持到16个数据库,集群模式下只能使用1个数据库空间。

过期键的删除策略?

1、被动删除(惰性)。在访问key时,如果发现key已经过期,那么会将key删除。

2、主动删除(定期)。定时清理key,每次清理会依次遍历所有DB,从db随机取出20个key,如果过期就删除,如果其中有5个key过期,那么就继续对这个db进行清理,否则开始清理下一个db。

3、内存不够时清理。Redis有最大内存的限制,通过maxmemory参数可以设置最大内存,当使用的内存超过了设置的最大内存,就要进行内存释放, 在进行内存释放的时候,会按照配置的淘汰策略清理内存。

内存淘汰策略有哪些?

当Redis的内存超过最大允许的内存之后,Redis 会触发内存淘汰策略,删除一些不常用的数据,以保证Redis服务器正常运行。

Redisv4.0前提供 6 种数据淘汰策略

  • volatile-lru:LRU(Least Recently Used),最近使用。利用LRU算法移除设置了过期时间的key

  • allkeys-lru:当内存不足以容纳新写入数据时,从数据集中移除最近最少使用的key

  • volatile-ttl:从已设置过期时间的数据集中挑选将要过期的数据淘汰

  • volatile-random:从已设置过期时间的数据集中任意选择数据淘汰

  • allkeys-random:从数据集中任意选择数据淘汰

  • no-eviction:禁止删除数据,当内存不足以容纳新写入数据时,新写入操作会报错

Redisv4.0后增加以下两种

  • volatile-lfu:LFU,Least Frequently Used,最少使用,从已设置过期时间的数据集中挑选最不经常使用的数据淘汰。

  • allkeys-lfu:当内存不足以容纳新写入数据时,从数据集中移除最不经常使用的key。

内存淘汰策略可以通过配置文件来修改,相应的配置项是maxmemory-policy,默认配置是noeviction

如何保证缓存与数据库双写时的数据一致性?

1、先删除缓存再更新数据库

进行更新操作时,先删除缓存,然后更新数据库,后续的请求再次读取时,会从数据库读取后再将新数据更新到缓存。

存在的问题:删除缓存数据之后,更新数据库完成之前,这个时间段内如果有新的读请求过来,就会从数据库读取旧数据重新写到缓存中,再次造成不一致,并且后续读的都是旧数据。

2、先更新数据库再删除缓存

进行更新操作时,先更新MySQL,成功之后,删除缓存,后续读取请求时再将新数据回写缓存。

存在的问题:更新MySQL和删除缓存这段时间内,请求读取的还是缓存的旧数据,不过等数据库更新完成,就会恢复一致,影响相对比较小。

3、异步更新缓存

数据库的更新操作完成后不直接操作缓存,而是把这个操作命令封装成消息扔到消息队列中,然后由Redis自己去消费更新数据,消息队列可以保证数据操作顺序一致性,确保缓存系统的数据正常。

缓存穿透、缓存雪崩、缓存击穿Redis缓存击穿、穿透、雪崩概念及解决方案

缓存穿透

缓存穿透是指查询一个不存在的数据,由于缓存是不命中时被动写的,如果从DB查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到DB去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了。

  • 缓存空值,不会查数据库。

  • 采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,查询不存在的数据会被这个bitmap拦截掉,从而避免了对DB的查询压力。

布隆过滤器的原理:当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。查询时,将元素通过散列函数映射之后会得到k个点,如果这些点有任何一个0,则被检元素一定不在,直接返回;如果都是1,则查询元素很可能存在,就会去查询Redis和数据库。

缓存雪崩

缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重挂掉。

解决方法:在原有的失效时间基础上增加一个随机值,使得过期时间分散一些。

缓存击穿

缓存击穿:大量的请求同时查询一个 key 时,此时这个 key 正好失效了,就会导致大量的请求都落到数据库。缓存击穿是查询缓存中失效的 key,而缓存穿透是查询不存在的 key。

解决方法:加分布式锁,第一个请求的线程可以拿到锁,拿到锁的线程查询到了数据之后设置缓存,其他的线程获取锁失败会等待50ms然后重新到缓存取数据,这样便可以避免大量的请求落到数据库。

public String get(String key) {
   String value = redis.get(key);
   if (value == null) {
       //缓存值过期
       String unique_key = systemId + ":" + key;
       //设置30s的超时
       if (redis.set(unique_key, 1, 'NX', 'PX', 30000) == 1) {  //设置成功
           value = db.get(key);
           redis.set(key, value, expire_secs);
           redis.del(unique_key);
       } else {  
           //其他线程已经到数据库取值并回写到缓存了,可以重试获取缓存值
           sleep(50);
           get(key);  //重试
       }
   } else {
       return value;
   }
}

pipeline的作用?

redis客户端执行一条命令分4个过程:发送命令、命令排队、命令执行、返回结果。使用pipeline可以批量请求,批量返回结果,执行速度比逐条执行要快。

使用pipeline组装的命令个数不能太多,不然数据量过大,增加客户端的等待时间,还可能造成网络阻塞,可以将大量命令的拆分多个小的pipeline命令完成。

原生批命令(mset和mget)与pipeline对比:

  • 原生批命令是原子性,pipeline非原子性。pipeline命令中途异常退出,之前执行成功的命令不会回滚

  • 原生批命令只有一个命令,但pipeline支持多命令

LUA脚本

Redis 通过 LUA 脚本创建具有原子性的命令:当lua脚本命令正在运行的时候,不会有其他脚本或 Redis 命令被执行,实现组合命令的原子操作。

在Redis中执行Lua脚本有两种方法:evalevalshaeval命令使用内置的 Lua 解释器,对 Lua 脚本进行求值。

//第一个参数是lua脚本,第二个参数是键名参数个数,剩下的是键名参数和附加参数
> eval "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}" 2 key1 key2 first second
1) "key1"
2) "key2"
3) "first"
4) "second"

lua脚本作用

1、Lua脚本在Redis中是原子执行的,执行过程中间不会插入其他命令。

2、Lua脚本可以将多条命令一次性打包,有效地减少网络开销。

应用场景

举例:限制接口访问频率。

在Redis维护一个接口访问次数的键值对,key是接口名称,value是访问次数。每次访问接口时,会执行以下操作:

  • 通过aop拦截接口的请求,对接口请求进行计数,每次进来一个请求,相应的接口访问次数count加1,存入redis。

  • 如果是第一次请求,则会设置count=1,并设置过期时间。因为这里set()expire()组合操作不是原子操作,所以引入lua脚本,实现原子操作,避免并发访问问题。

  • 如果给定时间范围内超过最大访问次数,则会抛出异常。

private String buildLuaScript() {
   return "local c" +
       "\nc = redis.call('get',KEYS[1])" +
       "\nif c and tonumber(c) > tonumber(ARGV[1]) then" +
       "\nreturn c;" +
       "\nend" +
       "\nc = redis.call('incr',KEYS[1])" +
       "\nif tonumber(c) == 1 then" +
       "\nredis.call('expire',KEYS[1],ARGV[2])" +
       "\nend" +
       "\nreturn c;";
}

String luaScript = buildLuaScript();
RedisScript<Number> redisScript = new DefaultRedisScript<>(luaScript, Number.class);
Number count = redisTemplate.execute(redisScript, keys, limit.count(), limit.period());

PS:这种接口限流的实现方式比较简单,问题也比较多,一般不会使用,接口限流用的比较多的是令牌桶算法和漏桶算法。

以上就是Redis中必须要掌握的20个问题,快来收藏吧!!的详细内容,更多请关注php爱好者其它相关文章!

相关阅读更多 +
最近更新
排行榜 更多 +
元梦之星最新版手游

元梦之星最新版手游

棋牌卡牌 下载
我自为道安卓版

我自为道安卓版

角色扮演 下载
一剑斩仙

一剑斩仙

角色扮演 下载