5.4. 类的实例化

Python 中对类进行实例化很直接。为了对类进行实例化,只要调用类,好象它是一个函数,传入定义在 __init__ 方法中的参数。返回值将是新创建的对象。

例 5.7. 创建 FileInfo 实例

>>> import fileinfo
>>> f = fileinfo.FileInfo("/music/_singles/kairo.mp3") 1
>>> f.__class__                                        2
<class fileinfo.FileInfo at 010EC204>
>>> f.__doc__                                          3
'store file metadata'
>>> f                                                  4
{'name': '/music/_singles/kairo.mp3'}
1 你正在创建 FileInfo 类(定义在 fileinfo 模块中)的实例,并且将新创建的实例赋值给变量 f。你传入了一个参数,/music/_singles/kairo.mp3,它将最后作为在 FileInfo__init__ 方法中的 filename 参数。
2 每一个类的实例有一个内置属性, __class__,它是对象的类。(注意这个表示包括了在我机器上的实例的物理地址,你的表示不会一样。) Java 程序员可能对 Class 类熟悉,这个类包含了象 getNamegetSuperclass 之类用来得到一个对象元数据信息的方法。在 Python 中,这类元数据可以直接通过对象本身的属性,象 __class__, __name____bases__ 来得到。
3 你可以象对函数或模块一样来访问实例的 doc string。一个类的所有实例共享相同的 doc string
4 还记得什么时候 __init__ 方法将它的 filename 参数赋给 self["name"] 吗?哦,答案在这。在创建类实例时你传入的参数被正确发送到 __init__ 方法中(当我们创建类实例时,我们所传递的参数被正确地发送给 __init__ 方法(随同一起传递的还有对象的引用,self,它是由 Python 自动添加的)。
注意
Python 中,创建类的实例只要调用一个类,仿佛它是一个函数就行了。不象 C++Java 有一个明确的 new 操作符。

5.4.1. 垃圾回收

如果说创建一个新的实例是容易的,那么销毁它们甚至更容易。通常,不需要明确地释放实例,因为当指派给它们的变量超出作用域时,它们会被自动地释放。内存泄漏在 Python 中很少见。

例 5.8. 尝试实现内存泄漏

>>> def leakmem():
...     f = fileinfo.FileInfo('/music/_singles/kairo.mp3') 1
...     
>>> for i in range(100):
...     leakmem()                                          2
1 每次 leakmem 函数被调用,你创建了 FileInfo 的一个实例,将其赋给变量 f,这个变量是函数内的一个局部变量。然后函数结束没有释放 f,所以你可能认为有内存泄漏,但是你错了。当函数结束时,局部变量 f 超出了作用域。在这个地方,不再有任何对 FileInfo 新创建实例的引用(因为除了 f 我们从未将其赋值给其它变量),所以 Python 替我们销毁掉实例。
2 不管我们调用 leakmem 函数多少次,决不会泄漏内存,因为每一次,Python 将在从 leakmem 返回前销毁掉新创建的 FileInfo 类实例。

对于这种垃圾收集的方式,技术上的术语叫做“引用计数”。Python 维护着对每个实例的引用列表。在上面的例子中,只有一个 FileInfo 的实例引用:局部变量 f。当函数结束时,变量 f 超出作用域,所以引用计数降为 0,则 Python 自动销毁掉实例。

Python 的以前版本中,存在引用计数失败的情况,这样 Python 不能在后面进行清除。如果你创建两个实例,它们相互引用(例如,双重链表,每一个结点有都一个指向列表中前一个和后一个结点的指针),任一个实例都不会被自动销毁,因为 Python (正确)认为对于每个实例都存在一个引用。 Python 2.0 有一种额外的垃圾回收方式,叫做“标记后清除”,它足够聪明,可以正确地清除循环引用。

作为曾经读过哲学专业的一员,让我感到困惑的是,当没有人对事物进行观察时,它们就消失了,但是这确实是在 Python 中所发生的。通常,你可以完全忘记内存管理,让 Python 在后面进行清理。

进一步阅读