Creates a digest string exactly like the crypt(3) function in the C library (assuming that you actually have a version there that has not been extirpated as a potential munition).
crypt is a one-way hash function. The PLAINTEXT and SALT are turned into a short string, called a digest, which is returned. The same PLAINTEXT and SALT will always return the same string, but there is no (known) way to get the original PLAINTEXT from the hash. Small changes in the PLAINTEXT or SALT will result in large changes in the digest.
There is no decrypt function. This function isn't all that useful for cryptography (for that, look for Crypt modules on your nearby CPAN mirror) and the name "crypt" is a bit of a misnomer. Instead it is primarily used to check if two pieces of text are the same without having to transmit or store the text itself. An example is checking if a correct password is given. The digest of the password is stored, not the password itself. The user types in a password that is crypt'd with the same salt as the stored digest. If the two digests match, the password is correct.
When verifying an existing digest string you should use the digest as
the salt (like crypt($plain, $digest) eq $digest
). The SALT used
to create the digest is visible as part of the digest. This ensures
crypt will hash the new string with the same
salt as the digest. This allows your code to work with the standard
crypt and with more exotic implementations.
In other words, assume nothing about the returned string itself nor
about how many bytes of SALT may matter.
Traditionally the result is a string of 13 bytes: two first bytes of
the salt, followed by 11 bytes from the set [./0-9A-Za-z]
, and only
the first eight bytes of PLAINTEXT mattered. But alternative
hashing schemes (like MD5), higher level security schemes (like C2),
and implementations on non-Unix platforms may produce different
strings.
When choosing a new salt create a random two character string whose
characters come from the set [./0-9A-Za-z]
(like join '', ('.',
'/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]
). This set of
characters is just a recommendation; the characters allowed in
the salt depend solely on your system's crypt library, and Perl can't
restrict what salts crypt accepts.
Here's an example that makes sure that whoever runs this program knows their password:
Of course, typing in your own password to whoever asks you for it is unwise.
The crypt function is unsuitable for hashing large quantities of data, not least of all because you can't get the information back. Look at the Digest module for more robust algorithms.
If using crypt on a Unicode string (which potentially has characters with codepoints above 255), Perl tries to make sense of the situation by trying to downgrade (a copy of) the string back to an eight-bit byte string before calling crypt (on that copy). If that works, good. If not, crypt dies with Wide character in crypt .
Portability issues: crypt in perlport.