Before main() 分析
时间:2007-02-17 来源:PHP爱好者
原创:alert7(alert7)
来源:http://www.xfocus.org/
Before main() 分析
作者:alert7
[email protected]
>
主页: http://www.xfocus.org
时间: 2001-9-25
★ 前言
本文分析了在main()之前的ELF程序流程,试图让您更清楚的把握程序的流程的脉络走向。
从而更深入的了解ELF。不正确之处,还请斧正。
★ 综述
ELF的可执行文件与共享库在结构上非常类似,它们具有一张程序段表,用来描述这些段如何映射到进程空间.
对于可执行文件来说,段的加载位置是固定的,程序段表中如实反映了段的加载地址.对于共享库来说,段的加
载位置是浮动的,位置无关的,程序段表反映的是以0作为基准地址的相对加载地址.尽管共享库的连接是不
充分的,为了便于测试动态链接器,Linux允许直接加载共享库运行.如果应用程序具有动态链接器的描述段,
内核在完成程序段加载后,紧接着加载动态链接器,并且启动动态链接器的入口.如果没有动态链接器的描述段,
就直接交给用户程序入口。
上述这部分请参考:linuxforum论坛上opera写的《分析ELF的加载过程》
在控制权交给动态链接器的入口后,首先调用_dl_start函数获得真实的程序入口(注:该入口地址
不是main的地址,也就是说一般程序的入口不是main),然后循环调用每个共享object的初始化函数,
接着跳转到真实的程序入口,一般为_start(程序中的_start)的一个例程,该例程压入一些参数到堆栈,
就直接调用__libc_start_main函数。在__libc_start_main函数中替动态连接器和自己程序安排
destructor,并运行程序的初始化函数。然后才把控制权交给main()函数。
★ main()之前流程
下面就是动态链接器的入口。
/* Initial entry point code for the dynamic linker.
The C function `_dl_start' is the real entry point;
its return value is the user program's entry point. */
#define RTLD_START asm ("
.textn
.globl _startn
.globl _dl_start_usern
_start:n
pushl %espn
call _dl_startn/*该函数返回时候,%eax中存放着user entry point address*/
popl %ebxn/*%ebx放着是esp的内容*/
_dl_start_user:n
# Save the user entry point address in %edi.n
movl %eax, %edin/*入口地址放在%edi*/
# Point %ebx at the GOT.
call 0fn
0: popl %ebxn
addl $_GLOBAL_OFFSET_TABLE_+[.-0b], %ebxn
# Store the highest stack addressn
movl __libc_stack_end@GOT(%ebx), %eaxn
movl %esp, (%eax)n/*把栈顶%esp放到GOT的__libc_stack_end中*/
# See if we were run as a command with the executable filen
# name as an extra leading argument.n
movl _dl_skip_args@GOT(%ebx), %eaxn
movl (%eax), %eaxn
# Pop the original argument count.n
popl %ecxn
# Subtract _dl_skip_args from it.n
subl %eax, %ecxn
# Adjust the stack pointer to skip _dl_skip_args words.n
leal (%esp,%eax,4), %espn
# Push back the modified argument count.n
pushl %ecxn
# Push the searchlist of the main object as argument inn
# _dl_init_next call below.n
movl _dl_main_searchlist@GOT(%ebx), %eaxn
movl (%eax), %esin
0: movl %esi,%eaxn
# Call _dl_init_next to return the address of an initializern
# function to run.n
call _dl_init_next@PLTn/*该函数返回初始化函数的地址,返回地址放在%eax中*/
# Check for zero return, when out of initializers.n
testl %eax, %eaxn
jz 1fn
# Call the shared object initializer function.n
# NOTE: We depend only on the registers (%ebx, %esi and %edi)n
# and the return address pushed by this call;n
# the initializer is called with the stack justn
# as it appears on entry, and it is free to moven
# the stack around, as long as it winds up jumping ton
# the return address on the top of the stack.n
call *%eaxn/*调用共享object初始化函数*/
# Loop to call _dl_init_next for the next initializer.n
jmp 0bn
1: # Clear the startup flag.n
movl _dl_starting_up@GOT(%ebx), %eaxn
movl $0, (%eax)n
# Pass our finalizer function to the user in %edx, as per ELF ABI.n
movl _dl_fini@GOT(%ebx), %edxn
# Jump to the user's entry point.n
jmp *%edin
.previousn
");
sysdepsi386start.s中
user's entry也就是下面的_start例程
/* This is the canonical entry point, usually the first thing in the text
segment. The SVR4/i386 ABI (pages 3-31, 3-32) says that when the entry
point runs, most registers' values are unspecified, except for:
%edx Contains a function pointer to be registered with `atexit'.
This is how the dynamic linker arranges to have DT_FINI
functions called for shared libraries that have been loaded
before this code runs.
%esp The stack contains the arguments and environment:
0(%esp) argc
4(%esp) argv[0]
...
(4*argc)(%esp) NULL
(4*(argc+1))(%esp) envp[0]
...
NULL
*/
.text
.globl _start
_start:
/* Clear the frame pointer. The ABI suggests this be done, to mark
the outermost frame obviously. */
xorl %ebp, %ebp
/* Extract the arguments as encoded on the stack and set up
the arguments for `main': argc, argv. envp will be determined
later in __libc_start_main. */
popl %esi /* Pop the argument count. */
movl %esp, %ecx /* argv starts just at the current stack top.*/
/* Before pushing the arguments align the stack to a double word
boundary to avoid penalties from misaligned accesses. Thanks
to Edward Seidl for pointing this out. */
andl $0xfffffff8, %esp
pushl %eax /* Push garbage because we allocate
28 more bytes. */
/* Provide the highest stack address to the user code (for stacks
which grow downwards). */
pushl %esp
pushl %edx /* Push address of the shared library
termination function. */
/* Push address of our own entry points to .fini and .init. */
pushl $_fini
pushl $_init
pushl %ecx /* Push second argument: argv. */
pushl %esi /* Push first argument: argc. */
pushl $main
/* Call the user's main function, and exit with its value.
But let the libc call main. */
call __libc_start_main
hlt /* Crash if somehow `exit' does return. */
__libc_start_main在sysdepsgenericlibc_start.c中
假设定义的是PIC的代码。
struct startup_info
{
void *sda_base;
int (*main) (int, char **, char **, void *);
int (*init) (int, char **, char **, void *);
void (*fini) (void);
};
int
__libc_start_main (int argc, char **argv, char **envp,
void *auxvec, void (*rtld_fini) (void),
struct startup_info *stinfo,
char **stack_on_entry)
{
/* the PPC SVR4 ABI says that the top thing on the stack will
be a NULL pointer, so if not we assume that we're being called
as a statically-linked program by Linux... */
if (*stack_on_entry != NULL)
{
/* ...in which case, we have argc as the top thing on the
stack, followed by argv (NULL-terminated), envp (likewise),
and the auxilary vector. */
argc = *(int *) stack_on_entry;
argv = stack_on_entry + 1;
envp = argv + argc + 1;
auxvec = envp;
while (*(char **) auxvec != NULL)
++auxvec;
++auxvec;
rtld_fini = NULL;
}
/* Store something that has some relationship to the end of the
stack, for backtraces. This variable should be thread-specific. */
__libc_stack_end = stack_on_entry + 4;
/* Set the global _environ variable correctly. */
__environ = envp;
/* Register the destructor of the dynamic linker if there is any. */
if (rtld_fini != NULL)
atexit (rtld_fini);/*替动态连接器安排destructor*/
/* Call the initializer of the libc. */
__libc_init_first (argc, argv, envp);/*一个空函数*/
/* Register the destructor of the program, if any. */
if (stinfo->fini)
atexit (stinfo->fini);/*安排程序自己的destructor*/
/* Call the initializer of the program, if any. */
/*运行程序的初始化函数*/
if (stinfo->init)
stinfo->init (argc, argv, __environ, auxvec);
/*运行程序main函数,到此,控制权才交给我们一般所说的程序入口*/
exit (stinfo->main (argc, argv, __environ, auxvec));
}
void
__libc_init_first (int argc __attribute__ ((unused)), ...)
{
}
int
atexit (void (*func) (void))
{
struct exit_function *new = __new_exitfn ();
if (new == NULL)
return -1;
new->flavor = ef_at;
new->func.at = func;
return 0;
}
/* Run initializers for MAP and its dependencies, in inverse dependency
order (that is, leaf nodes first). */
ElfW(Addr)
internal_function
_dl_init_next (struct r_scope_elem *searchlist)
{
unsigned int i;
/* The search list for symbol lookup is a flat list in top-down
dependency order, so processing that list from back to front gets us
breadth-first leaf-to-root order. */
i = searchlist->r_nlist;
while (i-- > 0)
{
struct link_map *l = searchlist->r_list;
if (l->l_init_called)
/* This object is all done. */
continue;
if (l->l_init_running)
{
/* This object's initializer was just running.
Now mark it as having run, so this object
will be skipped in the future. */
l->l_init_running = 0;
l->l_init_called = 1;
continue;
}
if (l->l_info[DT_INIT]
&& (l->l_name[0] != '' || l->l_type != lt_executable))
{
/* Run this object's initializer. */
l->l_init_running = 1;
/* Print a debug message if wanted. */
if (_dl_debug_impcalls)
_dl_debug_message (1, "ncalling init: ",
l->l_name[0] ? l->l_name : _dl_argv[0],
"nn", NULL);
/*共享库的基地址+init在基地址中的偏移量*/
return l->l_addr + l->l_info[DT_INIT]->d_un.d_ptr;
}
/* No initializer for this object.
Mark it so we will skip it in the future. */
l->l_init_called = 1;
}
/* Notify the debugger all new objects are now ready to go. */
_r_debug.r_state = RT_CONSISTENT;
_dl_debug_state ();
return 0;
}
在main()之前的程序流程看试有点简单,但正在运行的时候还是比较复杂的
(自己用GBD跟踪下就知道了),因为一般的程序都需要涉及到PLT,GOT标号的
重定位。弄清楚这个对ELF由为重要,以后有机会再补上一篇吧。
★ 手动确定程序和动态连接器的入口
[alert7@redhat62 alert7]$ cat helo.c
#include
int main(int argc,char **argv)
{
printf("hellon");
return 0;
}
[alert7@redhat62 alert7]$ gcc -o helo helo.c
[alert7@redhat62 alert7]$ readelf -h helo
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x8048320
Start of program headers: 52 (bytes into file)
Start of section headers: 8848 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 6
Size of section headers: 40 (bytes)
Number of section headers: 29
Section header string table index: 26
在这里我们看到程序的入口为0x8048320,可以看看是否为main函数。
[alert7@redhat62 alert7]$ gdb -q helo
(gdb) disass 0x8048320
Dump of assembler code for function _start:
0x8048320 <_start>: xor %ebp,%ebp
0x8048322 <_start+2>: pop %esi
0x8048323 <_start+3>: mov %esp,%ecx
0x8048325 <_start+5>: and $0xfffffff8,%esp
0x8048328 <_start+8>: push %eax
0x8048329 <_start+9>: push %esp
0x804832a <_start+10>: push %edx
0x804832b <_start+11>: push $0x804841c
0x8048330 <_start+16>: push $0x8048298
0x8048335 <_start+21>: push %ecx
0x8048336 <_start+22>: push %esi
0x8048337 <_start+23>: push $0x80483d0
0x804833c <_start+28>: call 0x80482f8 <__libc_start_main>
0x8048341 <_start+33>: hlt
0x8048342 <_start+34>: nop
End of assembler dump.
呵呵,不是main吧,程序的入口是个_start例程。
再来看动态连接器的入口是多少
[alert7@redhat62 alert7]$ ldd helo
libc.so.6 => /lib/libc.so.6 (0x40018000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
动态连接器ld-linux.so.2加载到进程地址空间0x40000000。
[alert7@redhat62 alert7]$ readelf -h /lib/ld-linux.so.2
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x1990
Start of program headers: 52 (bytes into file)
Start of section headers: 328916 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 3
Size of section headers: 40 (bytes)
Number of section headers: 23
Section header string table index: 20
共享object入口地址为0x1990。加上整个ld-linux.so.2被加载到进程地址空间0x40000000。
那么动态连接器的入口地址为0x1990+0x40000000=0x40001990。
用户空间执行的第一条指令地址就是0x40001990,既上面#define RTLD_START的开始。
php爱好者站 http://www.phpfans.net 文章|教程|下载|源码|论坛.
来源:http://www.xfocus.org/
Before main() 分析
作者:alert7
[email protected]
>
主页: http://www.xfocus.org
时间: 2001-9-25
★ 前言
本文分析了在main()之前的ELF程序流程,试图让您更清楚的把握程序的流程的脉络走向。
从而更深入的了解ELF。不正确之处,还请斧正。
★ 综述
ELF的可执行文件与共享库在结构上非常类似,它们具有一张程序段表,用来描述这些段如何映射到进程空间.
对于可执行文件来说,段的加载位置是固定的,程序段表中如实反映了段的加载地址.对于共享库来说,段的加
载位置是浮动的,位置无关的,程序段表反映的是以0作为基准地址的相对加载地址.尽管共享库的连接是不
充分的,为了便于测试动态链接器,Linux允许直接加载共享库运行.如果应用程序具有动态链接器的描述段,
内核在完成程序段加载后,紧接着加载动态链接器,并且启动动态链接器的入口.如果没有动态链接器的描述段,
就直接交给用户程序入口。
上述这部分请参考:linuxforum论坛上opera写的《分析ELF的加载过程》
在控制权交给动态链接器的入口后,首先调用_dl_start函数获得真实的程序入口(注:该入口地址
不是main的地址,也就是说一般程序的入口不是main),然后循环调用每个共享object的初始化函数,
接着跳转到真实的程序入口,一般为_start(程序中的_start)的一个例程,该例程压入一些参数到堆栈,
就直接调用__libc_start_main函数。在__libc_start_main函数中替动态连接器和自己程序安排
destructor,并运行程序的初始化函数。然后才把控制权交给main()函数。
★ main()之前流程
下面就是动态链接器的入口。
/* Initial entry point code for the dynamic linker.
The C function `_dl_start' is the real entry point;
its return value is the user program's entry point. */
#define RTLD_START asm ("
.textn
.globl _startn
.globl _dl_start_usern
_start:n
pushl %espn
call _dl_startn/*该函数返回时候,%eax中存放着user entry point address*/
popl %ebxn/*%ebx放着是esp的内容*/
_dl_start_user:n
# Save the user entry point address in %edi.n
movl %eax, %edin/*入口地址放在%edi*/
# Point %ebx at the GOT.
call 0fn
0: popl %ebxn
addl $_GLOBAL_OFFSET_TABLE_+[.-0b], %ebxn
# Store the highest stack addressn
movl __libc_stack_end@GOT(%ebx), %eaxn
movl %esp, (%eax)n/*把栈顶%esp放到GOT的__libc_stack_end中*/
# See if we were run as a command with the executable filen
# name as an extra leading argument.n
movl _dl_skip_args@GOT(%ebx), %eaxn
movl (%eax), %eaxn
# Pop the original argument count.n
popl %ecxn
# Subtract _dl_skip_args from it.n
subl %eax, %ecxn
# Adjust the stack pointer to skip _dl_skip_args words.n
leal (%esp,%eax,4), %espn
# Push back the modified argument count.n
pushl %ecxn
# Push the searchlist of the main object as argument inn
# _dl_init_next call below.n
movl _dl_main_searchlist@GOT(%ebx), %eaxn
movl (%eax), %esin
0: movl %esi,%eaxn
# Call _dl_init_next to return the address of an initializern
# function to run.n
call _dl_init_next@PLTn/*该函数返回初始化函数的地址,返回地址放在%eax中*/
# Check for zero return, when out of initializers.n
testl %eax, %eaxn
jz 1fn
# Call the shared object initializer function.n
# NOTE: We depend only on the registers (%ebx, %esi and %edi)n
# and the return address pushed by this call;n
# the initializer is called with the stack justn
# as it appears on entry, and it is free to moven
# the stack around, as long as it winds up jumping ton
# the return address on the top of the stack.n
call *%eaxn/*调用共享object初始化函数*/
# Loop to call _dl_init_next for the next initializer.n
jmp 0bn
1: # Clear the startup flag.n
movl _dl_starting_up@GOT(%ebx), %eaxn
movl $0, (%eax)n
# Pass our finalizer function to the user in %edx, as per ELF ABI.n
movl _dl_fini@GOT(%ebx), %edxn
# Jump to the user's entry point.n
jmp *%edin
.previousn
");
sysdepsi386start.s中
user's entry也就是下面的_start例程
/* This is the canonical entry point, usually the first thing in the text
segment. The SVR4/i386 ABI (pages 3-31, 3-32) says that when the entry
point runs, most registers' values are unspecified, except for:
%edx Contains a function pointer to be registered with `atexit'.
This is how the dynamic linker arranges to have DT_FINI
functions called for shared libraries that have been loaded
before this code runs.
%esp The stack contains the arguments and environment:
0(%esp) argc
4(%esp) argv[0]
...
(4*argc)(%esp) NULL
(4*(argc+1))(%esp) envp[0]
...
NULL
*/
.text
.globl _start
_start:
/* Clear the frame pointer. The ABI suggests this be done, to mark
the outermost frame obviously. */
xorl %ebp, %ebp
/* Extract the arguments as encoded on the stack and set up
the arguments for `main': argc, argv. envp will be determined
later in __libc_start_main. */
popl %esi /* Pop the argument count. */
movl %esp, %ecx /* argv starts just at the current stack top.*/
/* Before pushing the arguments align the stack to a double word
boundary to avoid penalties from misaligned accesses. Thanks
to Edward Seidl for pointing this out. */
andl $0xfffffff8, %esp
pushl %eax /* Push garbage because we allocate
28 more bytes. */
/* Provide the highest stack address to the user code (for stacks
which grow downwards). */
pushl %esp
pushl %edx /* Push address of the shared library
termination function. */
/* Push address of our own entry points to .fini and .init. */
pushl $_fini
pushl $_init
pushl %ecx /* Push second argument: argv. */
pushl %esi /* Push first argument: argc. */
pushl $main
/* Call the user's main function, and exit with its value.
But let the libc call main. */
call __libc_start_main
hlt /* Crash if somehow `exit' does return. */
__libc_start_main在sysdepsgenericlibc_start.c中
假设定义的是PIC的代码。
struct startup_info
{
void *sda_base;
int (*main) (int, char **, char **, void *);
int (*init) (int, char **, char **, void *);
void (*fini) (void);
};
int
__libc_start_main (int argc, char **argv, char **envp,
void *auxvec, void (*rtld_fini) (void),
struct startup_info *stinfo,
char **stack_on_entry)
{
/* the PPC SVR4 ABI says that the top thing on the stack will
be a NULL pointer, so if not we assume that we're being called
as a statically-linked program by Linux... */
if (*stack_on_entry != NULL)
{
/* ...in which case, we have argc as the top thing on the
stack, followed by argv (NULL-terminated), envp (likewise),
and the auxilary vector. */
argc = *(int *) stack_on_entry;
argv = stack_on_entry + 1;
envp = argv + argc + 1;
auxvec = envp;
while (*(char **) auxvec != NULL)
++auxvec;
++auxvec;
rtld_fini = NULL;
}
/* Store something that has some relationship to the end of the
stack, for backtraces. This variable should be thread-specific. */
__libc_stack_end = stack_on_entry + 4;
/* Set the global _environ variable correctly. */
__environ = envp;
/* Register the destructor of the dynamic linker if there is any. */
if (rtld_fini != NULL)
atexit (rtld_fini);/*替动态连接器安排destructor*/
/* Call the initializer of the libc. */
__libc_init_first (argc, argv, envp);/*一个空函数*/
/* Register the destructor of the program, if any. */
if (stinfo->fini)
atexit (stinfo->fini);/*安排程序自己的destructor*/
/* Call the initializer of the program, if any. */
/*运行程序的初始化函数*/
if (stinfo->init)
stinfo->init (argc, argv, __environ, auxvec);
/*运行程序main函数,到此,控制权才交给我们一般所说的程序入口*/
exit (stinfo->main (argc, argv, __environ, auxvec));
}
void
__libc_init_first (int argc __attribute__ ((unused)), ...)
{
}
int
atexit (void (*func) (void))
{
struct exit_function *new = __new_exitfn ();
if (new == NULL)
return -1;
new->flavor = ef_at;
new->func.at = func;
return 0;
}
/* Run initializers for MAP and its dependencies, in inverse dependency
order (that is, leaf nodes first). */
ElfW(Addr)
internal_function
_dl_init_next (struct r_scope_elem *searchlist)
{
unsigned int i;
/* The search list for symbol lookup is a flat list in top-down
dependency order, so processing that list from back to front gets us
breadth-first leaf-to-root order. */
i = searchlist->r_nlist;
while (i-- > 0)
{
struct link_map *l = searchlist->r_list;
if (l->l_init_called)
/* This object is all done. */
continue;
if (l->l_init_running)
{
/* This object's initializer was just running.
Now mark it as having run, so this object
will be skipped in the future. */
l->l_init_running = 0;
l->l_init_called = 1;
continue;
}
if (l->l_info[DT_INIT]
&& (l->l_name[0] != '' || l->l_type != lt_executable))
{
/* Run this object's initializer. */
l->l_init_running = 1;
/* Print a debug message if wanted. */
if (_dl_debug_impcalls)
_dl_debug_message (1, "ncalling init: ",
l->l_name[0] ? l->l_name : _dl_argv[0],
"nn", NULL);
/*共享库的基地址+init在基地址中的偏移量*/
return l->l_addr + l->l_info[DT_INIT]->d_un.d_ptr;
}
/* No initializer for this object.
Mark it so we will skip it in the future. */
l->l_init_called = 1;
}
/* Notify the debugger all new objects are now ready to go. */
_r_debug.r_state = RT_CONSISTENT;
_dl_debug_state ();
return 0;
}
在main()之前的程序流程看试有点简单,但正在运行的时候还是比较复杂的
(自己用GBD跟踪下就知道了),因为一般的程序都需要涉及到PLT,GOT标号的
重定位。弄清楚这个对ELF由为重要,以后有机会再补上一篇吧。
★ 手动确定程序和动态连接器的入口
[alert7@redhat62 alert7]$ cat helo.c
#include
int main(int argc,char **argv)
{
printf("hellon");
return 0;
}
[alert7@redhat62 alert7]$ gcc -o helo helo.c
[alert7@redhat62 alert7]$ readelf -h helo
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x8048320
Start of program headers: 52 (bytes into file)
Start of section headers: 8848 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 6
Size of section headers: 40 (bytes)
Number of section headers: 29
Section header string table index: 26
在这里我们看到程序的入口为0x8048320,可以看看是否为main函数。
[alert7@redhat62 alert7]$ gdb -q helo
(gdb) disass 0x8048320
Dump of assembler code for function _start:
0x8048320 <_start>: xor %ebp,%ebp
0x8048322 <_start+2>: pop %esi
0x8048323 <_start+3>: mov %esp,%ecx
0x8048325 <_start+5>: and $0xfffffff8,%esp
0x8048328 <_start+8>: push %eax
0x8048329 <_start+9>: push %esp
0x804832a <_start+10>: push %edx
0x804832b <_start+11>: push $0x804841c
0x8048330 <_start+16>: push $0x8048298
0x8048335 <_start+21>: push %ecx
0x8048336 <_start+22>: push %esi
0x8048337 <_start+23>: push $0x80483d0
0x804833c <_start+28>: call 0x80482f8 <__libc_start_main>
0x8048341 <_start+33>: hlt
0x8048342 <_start+34>: nop
End of assembler dump.
呵呵,不是main吧,程序的入口是个_start例程。
再来看动态连接器的入口是多少
[alert7@redhat62 alert7]$ ldd helo
libc.so.6 => /lib/libc.so.6 (0x40018000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
动态连接器ld-linux.so.2加载到进程地址空间0x40000000。
[alert7@redhat62 alert7]$ readelf -h /lib/ld-linux.so.2
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x1990
Start of program headers: 52 (bytes into file)
Start of section headers: 328916 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 3
Size of section headers: 40 (bytes)
Number of section headers: 23
Section header string table index: 20
共享object入口地址为0x1990。加上整个ld-linux.so.2被加载到进程地址空间0x40000000。
那么动态连接器的入口地址为0x1990+0x40000000=0x40001990。
用户空间执行的第一条指令地址就是0x40001990,既上面#define RTLD_START的开始。
php爱好者站 http://www.phpfans.net 文章|教程|下载|源码|论坛.
相关阅读 更多 +