[Project Euler]Problem 9
时间:2011-05-31 来源:class
Problem 9:
A Pythagorean triplet is a set of three natural numbers, a b c, for which,
a2 + b2 = c2
For example, 32 + 42 = 9 + 16 = 25 = 52.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
问题9:
寻找和为1000的毕达哥拉斯三元数(勾股数)。
思路:
a2 + b2 = c2< a2 +2ab+ b2 =(a+b)2
c<a+b,a+b+c=1000, 所以 a<b<c<500<a+b 。
a<b,a+b>500,所以250<b<c<500。
from math import ceil
def f(n):
m=ceil(n/2)
for b in range(ceil(m/2),m):
for c in range(b+1,m):
a=n-b-c
if a*a+b*b==c*c:
return a*b*c
优化:
内循环中多次求平方,可以先将 1到500的平方求出来,直接查表。
View Codefrom math import ceil
def f2(n):
m=ceil(n/2)
l=[i*i for i in range(m)]
for b in range(ceil(m/2),m):
for c in range(b+1,m):
a=n-b-c
if l[a]+l[b]==l[c]:
return a*b*c
相关阅读 更多 +