Access分页方案
时间:2011-03-19 来源:默^_^默
本文解决的问题:
1.ACCESS是否存在更有效率的分页方法?
2.现有ACCESS大数据量10万条数据分页的效率测试
3.ACCESS的数据承载量到底有多大?
相信很多ASP的站点还在使用access数据库,因为access数据库无须开专门的数据库空间,调用,迁移也方便,节省费用。另外对网站搭建者的专业能力要求也相对低一些。但随着网站的运行,数据库体积越来越大,数据量也从最初的几百条到了现在的上万条,上十万条甚至更多。于是因数据应用级别的改变带来的各种各样的应用问题出现了。而其中大数据量的列表分页效率问题更是让很多人头疼。笔者随便通过“大数据量分页效率”,“access 分页”等关键词分别百度和谷歌了一下,发现有此疑问的大有人在。很多网页上也给出了不同的解决办法。那么,这些方法到底能达到优化效率,提高速度的目的吗?
先让我们来看看以下的几个access分页优化方案,当然如果你直接将数据库升级到sql server,那么有更好的诸如存储过程等方法。今天我们就讨论一下access大数据量优化分页方法,以及access到底能承受多少数据量。
page=cint(request("page"))
sql="select * from 表 where 条件 order by 排序条件"
set rst=server.CreateObject("adodb.recordset")
rst.open sql,conn,1,1
rst.pagesize=MaxPerPage
rst.AbsolutePage = Page '将记录定位到对应页数的第一条
for i=1 to MaxPerPage
循环列表
rst.movenext
if rst.eof then exit for
next 这个方法是最为常用的access分页方法。 缺点:每次都要读入符合条件的所有记录,然后再定位于对应页的记录。当数据量大的时候,效率就十分的低下。 与此相似的方法是利用ado的move方法,每次将记录集游标移动 (page-1)*pagesize ,就实现了了记录的分页。经过测试,效率与方案一大致相同。
方案一:利用ado本身的结果集的pagesize,AbsolutePage的属性来进行分页 程序示例:(仅供示意,完善的各种条件判断自行添加) MaxPerPage=20
page=cint(request("page"))
sql="select * from 表 where 条件 order by 排序条件"
set rst=server.CreateObject("adodb.recordset")
rst.open sql,conn,1,1
rst.pagesize=MaxPerPage
rst.AbsolutePage = Page '将记录定位到对应页数的第一条
for i=1 to MaxPerPage
循环列表
rst.movenext
if rst.eof then exit for
next 这个方法是最为常用的access分页方法。 缺点:每次都要读入符合条件的所有记录,然后再定位于对应页的记录。当数据量大的时候,效率就十分的低下。 与此相似的方法是利用ado的move方法,每次将记录集游标移动 (page-1)*pagesize ,就实现了了记录的分页。经过测试,效率与方案一大致相同。
方案二: 1.设置一个自增长字段.并且该字段为INDEX. 2.由于是 ACCESS ,所以,只能是前台分页.自增长字段目的,就是为了实现分页功能. 1> 记录用户前页的最后一个 自增值 ,例如 M . 2> 下一页,取下一页的开始值.M+1 ,结束值: M+1+1.5*PAGESIZE (注:由于数据库会有增删操作,故应该取页大小应该有一个系数,你可以根据情况自定一个1大的系数. 3> 前台循环取 RS 的前 PAGESIZE 条, 写到一个 新的RS中,并返回. 这个方案通过自增值来分部截取不同分页的数据列表,文中考虑到数据库有增删操作,所以加入了一个系数的概念,这是一个不得已的做法。这个方案可以保证分页效率,但只能运用于增删不太频繁(自增值字段相邻记录的值相差不多的情况)的数据表。
方案三:not in 方法。这个方案在很多网站上都转载。据说对于越往前的分页效率提高越明显。我一直有所怀疑,因为“not in”本身就是个耗费资源的算法。很难相信一个低效率的方法能提高大数据量分页的效率。示例如下: sql="select top 12 * from 表 where Id not in(select top page*pagesize Id from 表 order by id desc) order by Id desc" 如果是第9页,每页20条即 select top 20 * from 表 where Id not in(select top 9*20 Id from 表 order by id desc) order by Id desc 原理即:选择top 20 的记录,条件是id不在前面分页的记录ID里。通过这种方式过滤掉前面分页的记录,然后通过top高效率的方式获取当页的记录。 “top”确实高效,但是“not in”呢? 于是我直接用这种方法测试了一下,测试条件:10万条数据。点击查询.......... MY GOD,长时间无响应,最后Ctrl+Alt+Delete 结束任务。再试,结果同样如此。于是改变一下测试条件,变成1000条数据,OK,结果显示非常顺利。 结论:如果你是大数据量分页,还是不要用这种方法,会死人的。
方案四:
"select * from (select top "&pagesize&" * from (select top "&page*pagesize&" * from 表" order by id desc) order by id) order by id desc"
这个方法简单说来,就是选取当前页及小于当前分页的所有记录,再通过“Top”方式选取当前页的记录。 这个方法没有出现效率低的语句,虽然至少要select两次(示例select了三次是为了排序)。但是效率应该不错。且越靠前的分页应该越明显。 如果还想节省效率,可以只select两次。 假如记录ID为1-100,每页5条。现在显示第4页,排序为倒序。 执行顺序: 1) 选择前4页的数据,即100-81共20条数据 2) 从这20条数据中选择最小的5条,即81-85。 3) 将选择的5条按倒序排,即成为 85-81。 如果节省第三步也可,只不过显示变成 第一页:96,97,98,99,100 第二页:91,92,93,94,95 其实也不错。 光说没用,最终看测试结果。我在相同的数据条件,服务器配置下,分别对方案一中的两种方法和方案四进行了access分页效率测试,测试数据如下 测试条件:>10万条;pagesize=20;分页总数>5000页;顺便也进行了一下“select 部分字段”和“select 所有字段”的对比测试。 从上面的测试结果来看,方案三的优势还是比较明显的。而到5000页的效率基本上和前两种方法差不多,甚至仍然有一定得优势。 另外,很多人在写select语句时, 习惯 select * from 表,这不是一个好习惯。上面的access分页测试结果表明,还是按需索要,按需供应的好,需要什么字段,就select什么字段。能够极大的节省服务器资源。很多网友提到ACCESS时都不免的轻视,“你还在用access?”,“还不换sql server?”,“用access你还想多快?”。其实在我的经验看来,即便是在10万条的应用级别上。access常常比sql server快。因为sql server需要额外连接,且多了一个带宽连接因素的影响(当然,网站服务器和数据库服务器运行速度和带宽都很OK,那没话说)。
sql server 在更高数据级别上的速度优势还是比较明显,毕竟与access不是一个级别的产品。
为了探索一下access数据库的极限。在40万条数据的情况下进行了上述分页测试。速度确实大打折扣。但是第三种方案在一万页内还是表现不错的。此时数据库已经达到400多兆。再结合之前处理过的几个4,500兆的access数据库。我认为40万条数据是access数据库在一般应用的一个界限,但不是极限。超过这个数,就需要在程序优化上做太多的工作。就有些不太值了。
相关阅读 更多 +