mysql 5.1分区表之正确设置按日期分区
时间:2010-02-28 来源:pkman110
错误的按日期分区例子
最直观的方法,就是直接用年月日这种日期格式来进行常规的分区:
PLAIN TEXT CODE:-
mysql> create table rms (d date)-> partition by range (d)-> (partition p0 values less than ('1995-01-01'),-> partition p1 VALUES LESS THAN ('2010-01-01'));
上面的例子中,就是直接用"Y-m-d"的格式来对一个table进行分区,可惜想当然往往不能奏效,会得到一个错误信息:
ERROR 1064 (42000): VALUES value must be of same type as partition function near '),
partition p1 VALUES LESS THAN ('2010-01-01'))' at line 3上述分区方式没有成功,而且明显的不经济,老练的DBA会用整型数值来进行分区:
PLAIN TEXT CODE:-
mysql> CREATE TABLE part_date1-> ( c1 int default NULL,-> c2 varchar(30) default NULL,-> c3 date default NULL) engine=myisam-> partition by range (cast(date_format(c3,'%Y%m%d') as signed))-> (PARTITION p0 VALUES LESS THAN (19950101),-> PARTITION p1 VALUES LESS THAN (19960101) ,-> PARTITION p2 VALUES LESS THAN (19970101) ,-> PARTITION p3 VALUES LESS THAN (19980101) ,-> PARTITION p4 VALUES LESS THAN (19990101) ,-> PARTITION p5 VALUES LESS THAN (20000101) ,-> PARTITION p6 VALUES LESS THAN (20010101) ,-> PARTITION p7 VALUES LESS THAN (20020101) ,-> PARTITION p8 VALUES LESS THAN (20030101) ,-> PARTITION p9 VALUES LESS THAN (20040101) ,-> PARTITION p10 VALUES LESS THAN (20100101),-> PARTITION p11 VALUES LESS THAN MAXVALUE );Query OK, 0 rows affected (0.01 sec)
搞定?接着往下分析
PLAIN TEXT CODE:-
mysql> explain partitions-> select count(*) from part_date1 where-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: part_date1partitions: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11type: ALLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: 8100000Extra: Using where1 row in set (0.00 sec)
万恶的mysql居然对上面的sql使用全表扫描,而不是按照我们的日期分区分块查询。原文中解释到MYSQL的优化器并不认这种日期形式的分区,花了大量的篇幅来引诱俺走上歧路,过分。
正确的日期分区例子
mysql优化器支持以下两种内置的日期函数进行分区:
- TO_DAYS()
- YEAR()
看个例子:
PLAIN TEXT CODE:-
mysql> CREATE TABLE part_date3-> ( c1 int default NULL,-> c2 varchar(30) default NULL,-> c3 date default NULL) engine=myisam-> partition by range (to_days(c3))-> (PARTITION p0 VALUES LESS THAN (to_days('1995-01-01')),-> PARTITION p1 VALUES LESS THAN (to_days('1996-01-01')) ,-> PARTITION p2 VALUES LESS THAN (to_days('1997-01-01')) ,-> PARTITION p3 VALUES LESS THAN (to_days('1998-01-01')) ,-> PARTITION p4 VALUES LESS THAN (to_days('1999-01-01')) ,-> PARTITION p5 VALUES LESS THAN (to_days('2000-01-01')) ,-> PARTITION p6 VALUES LESS THAN (to_days('2001-01-01')) ,-> PARTITION p7 VALUES LESS THAN (to_days('2002-01-01')) ,-> PARTITION p8 VALUES LESS THAN (to_days('2003-01-01')) ,-> PARTITION p9 VALUES LESS THAN (to_days('2004-01-01')) ,-> PARTITION p10 VALUES LESS THAN (to_days('2010-01-01')),-> PARTITION p11 VALUES LESS THAN MAXVALUE );Query OK, 0 rows affected (0.00 sec)
以to_days()函数分区成功,我们分析一下看看:
PLAIN TEXT CODE:-
mysql> explain partitions-> select count(*) from part_date3 where-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: part_date3partitions: p1type: ALLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: 808431Extra: Using where1 row in set (0.00 sec)
可以看到,mysql优化器这次不负众望,仅仅在p1分区进行查询。在这种情况下查询,真的能够带来提升查询效率么?下面分别对这次建立的part_date3和之前分区失败的part_date1做一个查询对比:
PLAIN TEXT CODE:-
mysql> select count(*) from part_date3 where-> c3> date '1995-01-01' and c3 <date '1995-12-31';+----------+| count(*) |+----------+| 805114 |+----------+1 row in set (4.11 sec)mysql> select count(*) from part_date1 where-> c3> date '1995-01-01' and c3 <date '1995-12-31';+----------+| count(*) |+----------+| 805114 |+----------+1 row in set (40.33 sec)
可以看到,分区正确的话query花费时间为4秒,而分区错误则花费时间40秒(相当于没有分区),效率有90%的提升!所以我们千万要正确的使用分区功能,分区后务必用explain验证,这样才能获得真正的性能提升。
热切期待msyql 5.1稳定版发布!
版权声明:可以任意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本声明
相关阅读 更多 +