linux 1.0 内核注解 linux/kernel/exit.c
时间:2009-03-08 来源:taozhijiangscu
/********************************************
*Created By: 陶治江
*Date: 2009-3-7
********************************************/ #define DEBUG_PROC_TREE #include <linux/wait.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/resource.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/malloc.h> #include <asm/segment.h>
extern void shm_exit (void);
extern void sem_exit (void); int getrusage(struct task_struct *, int, struct rusage *); //如果实际上信号被设置了就返回1,否则返回0,这个函数
//是被send_sig调用的
static int generate(unsigned long sig, struct task_struct * p)
{
//这一这种信号码同信号位图的转换方式
unsigned long mask = 1 << (sig-1);
//指向任务结构中的处理sigaction结构指针
struct sigaction * sa = sig + p->sigaction - 1; //如果任务结构中PF_PTRACED位被设置,就设置信号
if (p->flags & PF_PTRACED) {
p->signal |= mask;
return 1;
}
//如果该信号sigaction结构中指明该信号处理方法是被忽略,就
//不设置该信号,但是SIGCHLD信号除外
if (sa->sa_handler == SIG_IGN && sig != SIGCHLD)
return 0;
//有的信号被设置为默认的处理方法,这些信号也不被设置,
//另外的一个特殊的是信号SIGCONT已经被处理过了,也不用设置了
//但是呢,不知道SIGCONT信号如果有非默认的处理方式怎么办?
//在先前的send_sig中的处理是否合法?silly question哈
if ((sa->sa_handler == SIG_DFL) &&
(sig == SIGCONT || sig == SIGCHLD || sig == SIGWINCH))
return 0;
p->signal |= mask; //设置信号
return 1;
} //向指定的任务发送信号
int send_sig(unsigned long sig,struct task_struct * p,int priv)
{
if (!p || sig > 32)
return -EINVAL;
//信号SIGCONT使得因为SIGSTOP而停止的进程继续进行
if (!priv
&& ((sig != SIGCONT) || (current->session != p->session)) //是不是只有在同一个会话组中才能发送信号啊?
&& (current->euid != p->euid)
&& (current->uid != p->uid)
&& !suser())
return -EPERM;
if (!sig)
return 0;
if ((sig == SIGKILL) || (sig == SIGCONT)) {
if (p->state == TASK_STOPPED)
p->state = TASK_RUNNING;
p->exit_code = 0;
//这些信号虽然很古怪,也很多,但是都是要由SIGCONT
//来唤醒的,另外发现即使发送SIGKILL也先复位这些信号
p->signal &= ~( (1<<(SIGSTOP-1)) | (1<<(SIGTSTP-1)) |
(1<<(SIGTTIN-1)) | (1<<(SIGTTOU-1)) );
}
//如果是SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU就复位SIGCONT,从上面
//和这里可知,这些信号同SIGCONT是互斥的
if ((sig >= SIGSTOP) && (sig <= SIGTTOU))
p->signal &= ~(1<<(SIGCONT-1));
//虽然SIGCONT等信号这里被处理了,但是
//其他的信号的产生还要经过这个函数的
generate(sig,p);
return 0;
} /*如果当前任务的父进程是任务1,说明这个进程将退出了
*就发送SIGCHLD信号来善后,否则就向等待的父进程发送
*信号,唤醒等待的父进程*/
void notify_parent(struct task_struct * tsk)
{
//在进程创建(fork)的时候,p->exit_signal = clone_flags & CSIGNAL;
//当创建的父进程比子进程先死亡的时候,子进程的父进程就是init进程了
//这里猜测init和真正的父进程收到的子进程发送的信号是不一样的~~
if (tsk->p_pptr == task[1])
tsk->exit_signal = SIGCHLD;
send_sig(tsk->exit_signal, tsk->p_pptr, 1);
wake_up_interruptible(&tsk->p_pptr->wait_chldexit);
} /*释放指定任务结构的任务槽,内存页面和页目录项等
*但是任务不能释放任务本身哦*/
void release(struct task_struct * p)
{
int i; if (!p)
return;
if (p == current) {
printk("task releasing itself\n");
return;
}
for (i=1 ; i<NR_TASKS ; i++)
if (task[i] == p) {
task[i] = NULL;
REMOVE_LINKS(p); //在链表中撤除
free_page(p->kernel_stack_page);
free_page((long) p);
return;
}
panic("trying to release non-existent task");
} #ifdef DEBUG_PROC_TREE //检查指定的任务结构指针是否存在,如果存在返回0,否则1就不存在
int bad_task_ptr(struct task_struct *p)
{
int i; if (!p)
return 0;
for (i=0 ; i<NR_TASKS ; i++)
if (task[i] == p)
return 0;
return 1;
} void audit_ptree(void)
{
int i; for (i=1 ; i<NR_TASKS ; i++) {
if (!task[i])
continue;
if (bad_task_ptr(task[i]->p_pptr))
printk("Warning, pid %d's parent link is bad\n",
task[i]->pid);
if (bad_task_ptr(task[i]->p_cptr))
printk("Warning, pid %d's child link is bad\n",
task[i]->pid);
if (bad_task_ptr(task[i]->p_ysptr))
printk("Warning, pid %d's ys link is bad\n",
task[i]->pid);
if (bad_task_ptr(task[i]->p_osptr))
printk("Warning, pid %d's os link is bad\n",
task[i]->pid);
if (task[i]->p_pptr == task[i])
printk("Warning, pid %d parent link points to self\n",
task[i]->pid);
if (task[i]->p_cptr == task[i])
printk("Warning, pid %d child link points to self\n",
task[i]->pid);
if (task[i]->p_ysptr == task[i])
printk("Warning, pid %d ys link points to self\n",
task[i]->pid);
if (task[i]->p_osptr == task[i])
printk("Warning, pid %d os link points to self\n",
task[i]->pid);
if (task[i]->p_osptr) {
if (task[i]->p_pptr != task[i]->p_osptr->p_pptr)
printk(
"Warning, pid %d older sibling %d parent is %d\n",
task[i]->pid, task[i]->p_osptr->pid,
task[i]->p_osptr->p_pptr->pid);
if (task[i]->p_osptr->p_ysptr != task[i])
printk(
"Warning, pid %d older sibling %d has mismatched ys link\n",
task[i]->pid, task[i]->p_osptr->pid);
}
if (task[i]->p_ysptr) {
if (task[i]->p_pptr != task[i]->p_ysptr->p_pptr)
printk(
"Warning, pid %d younger sibling %d parent is %d\n",
task[i]->pid, task[i]->p_osptr->pid,
task[i]->p_osptr->p_pptr->pid);
if (task[i]->p_ysptr->p_osptr != task[i])
printk(
"Warning, pid %d younger sibling %d has mismatched os link\n",
task[i]->pid, task[i]->p_ysptr->pid);
}
if (task[i]->p_cptr) {
if (task[i]->p_cptr->p_pptr != task[i])
printk(
"Warning, pid %d youngest child %d has mismatched parent link\n",
task[i]->pid, task[i]->p_cptr->pid);
if (task[i]->p_cptr->p_ysptr)
printk(
"Warning, pid %d youngest child %d has non-NULL ys link\n",
task[i]->pid, task[i]->p_cptr->pid);
}
}
}
#endif /* DEBUG_PROC_TREE */ /*返回进程组的会话号,如果进程的pid号同
*指定的参数pgrp一样,也返回这单个进程的会话号*/
//这里关于会话、进程组、进程的关系是:
//每一个进程都属于一个进程组,而每一个进程组又属于一个会话
//一般当一个用户在一个终端登陆的时候即创建了一个会话
//进程组由组中的领头进程进行标识
//一个会话组中只能有一个前台进程组,其他的进程组都是后台进程组
//leader用来标识进程是否是进程组中的领头进程
int session_of_pgrp(int pgrp)
{
struct task_struct *p;
int fallback; fallback = -1;
for_each_task(p) {
if (p->session <= 0)
continue;
if (p->pgrp == pgrp)
return p->session; //会话号
if (p->pid == pgrp) //进程是领头进程,so?
fallback = p->session;
}
return fallback;
} //向进程组发送信号,成功返回0,否则返回错误号,这些
//常常在终端中使用^C, ^Z等来发送
int kill_pg(int pgrp, int sig, int priv)
{
struct task_struct *p;
int err,retval = -ESRCH;
int found = 0; if (sig<0 || sig>32 || pgrp<=0)
return -EINVAL;
for_each_task(p) {
if (p->pgrp == pgrp) {
if ((err = send_sig(sig,p,priv)) != 0) //注意的是send_sig是返回0表示成功的,
//而generate()是用0和1看是否设置了,注意区分
retval = err;
else
found++;
}
}
return(found ? 0 : retval);
} //向会话首领发送信号,常常是发送SIGHUP信号给
//拥有终端的进程组的组长(我是这样理解的)
int kill_sl(int sess, int sig, int priv)
{
struct task_struct *p;
int err,retval = -ESRCH;
int found = 0; if (sig<0 || sig>32 || sess<=0)
return -EINVAL;
for_each_task(p) {
if (p->session == sess && p->leader) {
if ((err = send_sig(sig,p,priv)) != 0)
retval = err;
else
found++;
}
}
return(found ? 0 : retval);
} //针对于pid>0的用来指定某个特定进程的操作
//这个函数将会被sys_kill调用
int kill_proc(int pid, int sig, int priv)
{
struct task_struct *p; if (sig<0 || sig>32)
return -EINVAL;
for_each_task(p) {
if (p && p->pid == pid)
return send_sig(sig,p,priv); //0
}
return(-ESRCH);
} //向制定进程发送指定信号(POSIX制定-1参数没有定义,这里有出入哦)
asmlinkage int sys_kill(int pid,int sig)
{
int err, retval = 0, count = 0; if (!pid) //如果pid==0,就向同组的所有进程发送信号
return(kill_pg(current->pgrp,sig,0));
if (pid == -1) { //向所有的进程发送信号,进程1除外
struct task_struct * p;
for_each_task(p) {
if (p->pid > 1 && p != current) { //这个把current剔除了,but why?
++count;
if ((err = send_sig(sig,p,0)) != -EPERM)
retval = err;
}
}
return(count ? retval : -ESRCH); //count>0,证明发送过了,是局部的返回值
// 0 is the best
}
if (pid < 0) //向指定的进程组发送信号
return(kill_pg(-pid,sig,0));
//pid>0,向指定的pid发送信号
return(kill_proc(pid,sig,0));
} //是否是孤儿进程“组”,如果不是返回0,是返回1
//呃,可能的理解是:由于一个会话可以有多个进程组,而每个进程
//也可以同时存在于多个进程组当中。所以如果一个会话中的一个进程组
//同外界的维系只是因为一个父进程和一个子进程之间的关系,那么
//父进程或者子进程的对出将产生孤儿进程组了
//而POSIX给予的处理方式就是先向进程组发送SIGHUP信号,这将导致
//进程组中的信号被挂起,其后再发送SIGCONT信号,让没有被SIGHUP
//挂起的信号继续运行
int is_orphaned_pgrp(int pgrp)
{
struct task_struct *p; for_each_task(p) {
if ((p->pgrp != pgrp) ||
(p->state == TASK_ZOMBIE) ||
(p->p_pptr->pid == 1))
continue;
//this indicate p->pgrp==pgrp
//下面表示父进程和子进程不再同一个进程组,那么就不是孤儿进程组了
if ((p->p_pptr->pgrp != pgrp) &&
(p->p_pptr->session == p->session))
return 0;
}
return(1); /* (sighing) "Often!" */
} //检查进程组中是否有TASK_STOPPED标记的进程
//如果有返回1,否则返回
static int has_stopped_jobs(int pgrp)
{
struct task_struct * p; for_each_task(p) {
if (p->pgrp != pgrp)
continue;
if (p->state == TASK_STOPPED)
return(1);
}
return(0);
} /*这个进程要所有的子进程忘记自己是他们原来的"老子" :-)
*一般是将他们的父进程设置为任务1,不知道什么使用用
*到任务0了 :-(
*可能这个函数是当父进程要死的时候,由init进程收养
*孤儿进程的*/
static void forget_original_parent(struct task_struct * father)
{
struct task_struct * p; for_each_task(p) {
if (p->p_opptr == father)
if (task[1])
p->p_opptr = task[1];
else
p->p_opptr = task[0];
}
}
NORET_TYPE void do_exit(long code) //这里的NORET_TYPE实际就是__volatile__ :-)
{
struct task_struct *p;
int i; fake_volatile:
if (current->semun)
sem_exit();
if (current->shm)
shm_exit();
free_page_tables(current);
for (i=0 ; i<NR_OPEN ; i++)
if (current->filp[i])
sys_close(i);
forget_original_parent(current); //当前进程的所有的子进程被init收养
/*放回各个节点*/
iput(current->pwd);
current->pwd = NULL;
iput(current->root);
current->root = NULL;
iput(current->executable);
current->executable = NULL;
{
struct vm_area_struct * mpnt, *mpnt1;
mpnt = current->mmap;
current->mmap = NULL;
while (mpnt) {
mpnt1 = mpnt->vm_next;
if (mpnt->vm_ops && mpnt->vm_ops->close)
mpnt->vm_ops->close(mpnt);
kfree(mpnt);
mpnt = mpnt1;
}
} if (current->ldt) {
vfree(current->ldt);
current->ldt = NULL;
for (i=1 ; i<NR_TASKS ; i++) {
if (task[i] == current) {
set_ldt_desc(gdt+(i<<1)+FIRST_LDT_ENTRY, &default_ldt, 1); //清空
load_ldt(i);
}
}
} current->state = TASK_ZOMBIE; //僵死进程了
current->exit_code = code;
current->rss = 0;
//这里说明了current进程所在的进程组只有通过current
//和父进程的关系维系着同外界进程组的联系,那么current的
//退出将导致current进程组为孤儿进程组,那么就用POSIX的处理方式处理
if ((current->p_pptr->pgrp != current->pgrp) &&
(current->p_pptr->session == current->session) &&
is_orphaned_pgrp(current->pgrp) &&
has_stopped_jobs(current->pgrp))
{
kill_pg(current->pgrp,SIGHUP,1);
kill_pg(current->pgrp,SIGCONT,1);
}
//通知自己的父进程
notify_parent(current);
/*
* This loop does two things:
*
* A. Make init inherit all the child processes
* B. Check to see if any process groups have become orphaned
* as a result of our exiting, and if they have any stopped
* jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
*/
while ((p = current->p_cptr) != NULL) {
current->p_cptr = p->p_osptr; //p是current的子进程!
p->p_ysptr = NULL;
//让init进程收养current进程的所有的子进程
p->flags &= ~(PF_PTRACED|PF_TRACESYS);
if (task[1] && task[1] != current)
p->p_pptr = task[1];
else
p->p_pptr = task[0];
p->p_osptr = p->p_pptr->p_cptr;
p->p_osptr->p_ysptr = p;
p->p_pptr->p_cptr = p;
if (p->state == TASK_ZOMBIE) //也是僵死进程了
notify_parent(p);
//当current进程退出的时候,它们的子进程所在的进程组
//也有可能成为孤儿进程组的,同前面一样再操作一次!
if ((p->pgrp != current->pgrp) &&
(p->session == current->session) &&
is_orphaned_pgrp(p->pgrp) &&
has_stopped_jobs(p->pgrp)) {
kill_pg(p->pgrp,SIGHUP,1);
kill_pg(p->pgrp,SIGCONT,1);
}
}
if (current->leader) //进程组首领
disassociate_ctty(1); //如果有会话终端,就释放终端资源
if (last_task_used_math == current)
last_task_used_math = NULL; //呃,反正进程要结束了,不用保存协处理器信息了
#ifdef DEBUG_PROC_TREE
audit_ptree();
#endif
schedule();
goto fake_volatile;
} asmlinkage int sys_exit(int error_code)
{
do_exit((error_code&0xff)<<8);
} // The wait4 function suspends execution of the current process until a
// child as specified by the pid argument has exited, or until a signal is
// delivered whose action is to terminate the current process or to call a
// signal handling function. If a child as requested by pid has already
// exited by the time of the call (a so-called "zombie" process), the
// function returns immediately. Any system resources used by the child
// are freed.
asmlinkage int sys_wait4(pid_t pid,unsigned long * stat_addr, int options, struct rusage * ru)
{
int flag, retval;
struct wait_queue wait = { current, NULL };
struct task_struct *p; if (stat_addr) { //用来保存终止进程的状态
flag = verify_area(VERIFY_WRITE, stat_addr, 4);
if (flag)
return flag;
}
add_wait_queue(¤t->wait_chldexit,&wait);
repeat:
flag=0;
for (p = current->p_cptr ; p ; p = p->p_osptr) {
if (pid>0) { //指定进程
if (p->pid != pid)
continue;
} else if (!pid) { //当前进程组
if (p->pgrp != current->pgrp)
continue;
} else if (pid != -1) { //指定进程组
if (p->pgrp != -pid)
continue;
}
//else 全部的子进程
/* wait for cloned processes iff the __WCLONE flag is set */
if ((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
continue;
flag = 1;
switch (p->state) {
case TASK_STOPPED: //进程被挂起,因为被追踪或者收到了停止类的信号
if (!p->exit_code) //收到了停止类的信号而不是被追踪
continue;
if (!(options & WUNTRACED) && !(p->flags & PF_PTRACED)) //不被追踪
continue;
if (stat_addr) //拷贝信息
put_fs_long((p->exit_code << 8) | 0x7f,
stat_addr);
p->exit_code = 0; //清楚退出代码
if (ru != NULL)
getrusage(p, RUSAGE_BOTH, ru); //获得资源的利用信息
retval = p->pid;
goto end_wait4; //处理完毕,退出
case TASK_ZOMBIE: //呃,时间统计并加入到当前进程中
current->cutime += p->utime + p->cutime;
current->cstime += p->stime + p->cstime;
current->cmin_flt += p->min_flt + p->cmin_flt;
current->cmaj_flt += p->maj_flt + p->cmaj_flt;
if (ru != NULL)
getrusage(p, RUSAGE_BOTH, ru);
flag = p->pid;
if (stat_addr)
put_fs_long(p->exit_code, stat_addr); //注意这里的退出代码同上面的不同!
if (p->p_opptr != p->p_pptr) {
//如果进程的原始父进程同现在的父进程不同就不能释放资源
//此时将进程从队列中断开,然后设置为原始的父进程,再插入
//到链中,并通知父进程发送 SIGCHLD信号
REMOVE_LINKS(p);
p->p_pptr = p->p_opptr;
SET_LINKS(p);
notify_parent(p); //通知父进程
} else
release(p); //释放资源
#ifdef DEBUG_PROC_TREE
audit_ptree();
#endif
retval = flag;
goto end_wait4;
default:
continue;
}
}
//呃,这里说明有满足条件的进程,但是进程的状态不是停止或者僵死的状态
if (flag) {
retval = 0;
if (options & WNOHANG) //这个标志表示如果没有子进程处于退出或者停止
//状态就立即返回
goto end_wait4;
current->state=TASK_INTERRUPTIBLE;
schedule();
current->signal &= ~(1<<(SIGCHLD-1));
retval = -ERESTARTSYS;
if (current->signal & ~current->blocked)
goto end_wait4;
//如果该进程再次运行,说明是被别的信号唤醒了,这时候重新扫描
goto repeat;
}
retval = -ECHILD;
end_wait4:
remove_wait_queue(¤t->wait_chldexit,&wait);
return retval;
} asmlinkage int sys_waitpid(pid_t pid,unsigned long * stat_addr, int options)
{
return sys_wait4(pid, stat_addr, options, NULL);
}
文档地址:http://blogimg.chinaunix.net/blog/upfile2/090308130013.pdf
*Created By: 陶治江
*Date: 2009-3-7
********************************************/ #define DEBUG_PROC_TREE #include <linux/wait.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/resource.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/malloc.h> #include <asm/segment.h>
extern void shm_exit (void);
extern void sem_exit (void); int getrusage(struct task_struct *, int, struct rusage *); //如果实际上信号被设置了就返回1,否则返回0,这个函数
//是被send_sig调用的
static int generate(unsigned long sig, struct task_struct * p)
{
//这一这种信号码同信号位图的转换方式
unsigned long mask = 1 << (sig-1);
//指向任务结构中的处理sigaction结构指针
struct sigaction * sa = sig + p->sigaction - 1; //如果任务结构中PF_PTRACED位被设置,就设置信号
if (p->flags & PF_PTRACED) {
p->signal |= mask;
return 1;
}
//如果该信号sigaction结构中指明该信号处理方法是被忽略,就
//不设置该信号,但是SIGCHLD信号除外
if (sa->sa_handler == SIG_IGN && sig != SIGCHLD)
return 0;
//有的信号被设置为默认的处理方法,这些信号也不被设置,
//另外的一个特殊的是信号SIGCONT已经被处理过了,也不用设置了
//但是呢,不知道SIGCONT信号如果有非默认的处理方式怎么办?
//在先前的send_sig中的处理是否合法?silly question哈
if ((sa->sa_handler == SIG_DFL) &&
(sig == SIGCONT || sig == SIGCHLD || sig == SIGWINCH))
return 0;
p->signal |= mask; //设置信号
return 1;
} //向指定的任务发送信号
int send_sig(unsigned long sig,struct task_struct * p,int priv)
{
if (!p || sig > 32)
return -EINVAL;
//信号SIGCONT使得因为SIGSTOP而停止的进程继续进行
if (!priv
&& ((sig != SIGCONT) || (current->session != p->session)) //是不是只有在同一个会话组中才能发送信号啊?
&& (current->euid != p->euid)
&& (current->uid != p->uid)
&& !suser())
return -EPERM;
if (!sig)
return 0;
if ((sig == SIGKILL) || (sig == SIGCONT)) {
if (p->state == TASK_STOPPED)
p->state = TASK_RUNNING;
p->exit_code = 0;
//这些信号虽然很古怪,也很多,但是都是要由SIGCONT
//来唤醒的,另外发现即使发送SIGKILL也先复位这些信号
p->signal &= ~( (1<<(SIGSTOP-1)) | (1<<(SIGTSTP-1)) |
(1<<(SIGTTIN-1)) | (1<<(SIGTTOU-1)) );
}
//如果是SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU就复位SIGCONT,从上面
//和这里可知,这些信号同SIGCONT是互斥的
if ((sig >= SIGSTOP) && (sig <= SIGTTOU))
p->signal &= ~(1<<(SIGCONT-1));
//虽然SIGCONT等信号这里被处理了,但是
//其他的信号的产生还要经过这个函数的
generate(sig,p);
return 0;
} /*如果当前任务的父进程是任务1,说明这个进程将退出了
*就发送SIGCHLD信号来善后,否则就向等待的父进程发送
*信号,唤醒等待的父进程*/
void notify_parent(struct task_struct * tsk)
{
//在进程创建(fork)的时候,p->exit_signal = clone_flags & CSIGNAL;
//当创建的父进程比子进程先死亡的时候,子进程的父进程就是init进程了
//这里猜测init和真正的父进程收到的子进程发送的信号是不一样的~~
if (tsk->p_pptr == task[1])
tsk->exit_signal = SIGCHLD;
send_sig(tsk->exit_signal, tsk->p_pptr, 1);
wake_up_interruptible(&tsk->p_pptr->wait_chldexit);
} /*释放指定任务结构的任务槽,内存页面和页目录项等
*但是任务不能释放任务本身哦*/
void release(struct task_struct * p)
{
int i; if (!p)
return;
if (p == current) {
printk("task releasing itself\n");
return;
}
for (i=1 ; i<NR_TASKS ; i++)
if (task[i] == p) {
task[i] = NULL;
REMOVE_LINKS(p); //在链表中撤除
free_page(p->kernel_stack_page);
free_page((long) p);
return;
}
panic("trying to release non-existent task");
} #ifdef DEBUG_PROC_TREE //检查指定的任务结构指针是否存在,如果存在返回0,否则1就不存在
int bad_task_ptr(struct task_struct *p)
{
int i; if (!p)
return 0;
for (i=0 ; i<NR_TASKS ; i++)
if (task[i] == p)
return 0;
return 1;
} void audit_ptree(void)
{
int i; for (i=1 ; i<NR_TASKS ; i++) {
if (!task[i])
continue;
if (bad_task_ptr(task[i]->p_pptr))
printk("Warning, pid %d's parent link is bad\n",
task[i]->pid);
if (bad_task_ptr(task[i]->p_cptr))
printk("Warning, pid %d's child link is bad\n",
task[i]->pid);
if (bad_task_ptr(task[i]->p_ysptr))
printk("Warning, pid %d's ys link is bad\n",
task[i]->pid);
if (bad_task_ptr(task[i]->p_osptr))
printk("Warning, pid %d's os link is bad\n",
task[i]->pid);
if (task[i]->p_pptr == task[i])
printk("Warning, pid %d parent link points to self\n",
task[i]->pid);
if (task[i]->p_cptr == task[i])
printk("Warning, pid %d child link points to self\n",
task[i]->pid);
if (task[i]->p_ysptr == task[i])
printk("Warning, pid %d ys link points to self\n",
task[i]->pid);
if (task[i]->p_osptr == task[i])
printk("Warning, pid %d os link points to self\n",
task[i]->pid);
if (task[i]->p_osptr) {
if (task[i]->p_pptr != task[i]->p_osptr->p_pptr)
printk(
"Warning, pid %d older sibling %d parent is %d\n",
task[i]->pid, task[i]->p_osptr->pid,
task[i]->p_osptr->p_pptr->pid);
if (task[i]->p_osptr->p_ysptr != task[i])
printk(
"Warning, pid %d older sibling %d has mismatched ys link\n",
task[i]->pid, task[i]->p_osptr->pid);
}
if (task[i]->p_ysptr) {
if (task[i]->p_pptr != task[i]->p_ysptr->p_pptr)
printk(
"Warning, pid %d younger sibling %d parent is %d\n",
task[i]->pid, task[i]->p_osptr->pid,
task[i]->p_osptr->p_pptr->pid);
if (task[i]->p_ysptr->p_osptr != task[i])
printk(
"Warning, pid %d younger sibling %d has mismatched os link\n",
task[i]->pid, task[i]->p_ysptr->pid);
}
if (task[i]->p_cptr) {
if (task[i]->p_cptr->p_pptr != task[i])
printk(
"Warning, pid %d youngest child %d has mismatched parent link\n",
task[i]->pid, task[i]->p_cptr->pid);
if (task[i]->p_cptr->p_ysptr)
printk(
"Warning, pid %d youngest child %d has non-NULL ys link\n",
task[i]->pid, task[i]->p_cptr->pid);
}
}
}
#endif /* DEBUG_PROC_TREE */ /*返回进程组的会话号,如果进程的pid号同
*指定的参数pgrp一样,也返回这单个进程的会话号*/
//这里关于会话、进程组、进程的关系是:
//每一个进程都属于一个进程组,而每一个进程组又属于一个会话
//一般当一个用户在一个终端登陆的时候即创建了一个会话
//进程组由组中的领头进程进行标识
//一个会话组中只能有一个前台进程组,其他的进程组都是后台进程组
//leader用来标识进程是否是进程组中的领头进程
int session_of_pgrp(int pgrp)
{
struct task_struct *p;
int fallback; fallback = -1;
for_each_task(p) {
if (p->session <= 0)
continue;
if (p->pgrp == pgrp)
return p->session; //会话号
if (p->pid == pgrp) //进程是领头进程,so?
fallback = p->session;
}
return fallback;
} //向进程组发送信号,成功返回0,否则返回错误号,这些
//常常在终端中使用^C, ^Z等来发送
int kill_pg(int pgrp, int sig, int priv)
{
struct task_struct *p;
int err,retval = -ESRCH;
int found = 0; if (sig<0 || sig>32 || pgrp<=0)
return -EINVAL;
for_each_task(p) {
if (p->pgrp == pgrp) {
if ((err = send_sig(sig,p,priv)) != 0) //注意的是send_sig是返回0表示成功的,
//而generate()是用0和1看是否设置了,注意区分
retval = err;
else
found++;
}
}
return(found ? 0 : retval);
} //向会话首领发送信号,常常是发送SIGHUP信号给
//拥有终端的进程组的组长(我是这样理解的)
int kill_sl(int sess, int sig, int priv)
{
struct task_struct *p;
int err,retval = -ESRCH;
int found = 0; if (sig<0 || sig>32 || sess<=0)
return -EINVAL;
for_each_task(p) {
if (p->session == sess && p->leader) {
if ((err = send_sig(sig,p,priv)) != 0)
retval = err;
else
found++;
}
}
return(found ? 0 : retval);
} //针对于pid>0的用来指定某个特定进程的操作
//这个函数将会被sys_kill调用
int kill_proc(int pid, int sig, int priv)
{
struct task_struct *p; if (sig<0 || sig>32)
return -EINVAL;
for_each_task(p) {
if (p && p->pid == pid)
return send_sig(sig,p,priv); //0
}
return(-ESRCH);
} //向制定进程发送指定信号(POSIX制定-1参数没有定义,这里有出入哦)
asmlinkage int sys_kill(int pid,int sig)
{
int err, retval = 0, count = 0; if (!pid) //如果pid==0,就向同组的所有进程发送信号
return(kill_pg(current->pgrp,sig,0));
if (pid == -1) { //向所有的进程发送信号,进程1除外
struct task_struct * p;
for_each_task(p) {
if (p->pid > 1 && p != current) { //这个把current剔除了,but why?
++count;
if ((err = send_sig(sig,p,0)) != -EPERM)
retval = err;
}
}
return(count ? retval : -ESRCH); //count>0,证明发送过了,是局部的返回值
// 0 is the best
}
if (pid < 0) //向指定的进程组发送信号
return(kill_pg(-pid,sig,0));
//pid>0,向指定的pid发送信号
return(kill_proc(pid,sig,0));
} //是否是孤儿进程“组”,如果不是返回0,是返回1
//呃,可能的理解是:由于一个会话可以有多个进程组,而每个进程
//也可以同时存在于多个进程组当中。所以如果一个会话中的一个进程组
//同外界的维系只是因为一个父进程和一个子进程之间的关系,那么
//父进程或者子进程的对出将产生孤儿进程组了
//而POSIX给予的处理方式就是先向进程组发送SIGHUP信号,这将导致
//进程组中的信号被挂起,其后再发送SIGCONT信号,让没有被SIGHUP
//挂起的信号继续运行
int is_orphaned_pgrp(int pgrp)
{
struct task_struct *p; for_each_task(p) {
if ((p->pgrp != pgrp) ||
(p->state == TASK_ZOMBIE) ||
(p->p_pptr->pid == 1))
continue;
//this indicate p->pgrp==pgrp
//下面表示父进程和子进程不再同一个进程组,那么就不是孤儿进程组了
if ((p->p_pptr->pgrp != pgrp) &&
(p->p_pptr->session == p->session))
return 0;
}
return(1); /* (sighing) "Often!" */
} //检查进程组中是否有TASK_STOPPED标记的进程
//如果有返回1,否则返回
static int has_stopped_jobs(int pgrp)
{
struct task_struct * p; for_each_task(p) {
if (p->pgrp != pgrp)
continue;
if (p->state == TASK_STOPPED)
return(1);
}
return(0);
} /*这个进程要所有的子进程忘记自己是他们原来的"老子" :-)
*一般是将他们的父进程设置为任务1,不知道什么使用用
*到任务0了 :-(
*可能这个函数是当父进程要死的时候,由init进程收养
*孤儿进程的*/
static void forget_original_parent(struct task_struct * father)
{
struct task_struct * p; for_each_task(p) {
if (p->p_opptr == father)
if (task[1])
p->p_opptr = task[1];
else
p->p_opptr = task[0];
}
}
NORET_TYPE void do_exit(long code) //这里的NORET_TYPE实际就是__volatile__ :-)
{
struct task_struct *p;
int i; fake_volatile:
if (current->semun)
sem_exit();
if (current->shm)
shm_exit();
free_page_tables(current);
for (i=0 ; i<NR_OPEN ; i++)
if (current->filp[i])
sys_close(i);
forget_original_parent(current); //当前进程的所有的子进程被init收养
/*放回各个节点*/
iput(current->pwd);
current->pwd = NULL;
iput(current->root);
current->root = NULL;
iput(current->executable);
current->executable = NULL;
{
struct vm_area_struct * mpnt, *mpnt1;
mpnt = current->mmap;
current->mmap = NULL;
while (mpnt) {
mpnt1 = mpnt->vm_next;
if (mpnt->vm_ops && mpnt->vm_ops->close)
mpnt->vm_ops->close(mpnt);
kfree(mpnt);
mpnt = mpnt1;
}
} if (current->ldt) {
vfree(current->ldt);
current->ldt = NULL;
for (i=1 ; i<NR_TASKS ; i++) {
if (task[i] == current) {
set_ldt_desc(gdt+(i<<1)+FIRST_LDT_ENTRY, &default_ldt, 1); //清空
load_ldt(i);
}
}
} current->state = TASK_ZOMBIE; //僵死进程了
current->exit_code = code;
current->rss = 0;
//这里说明了current进程所在的进程组只有通过current
//和父进程的关系维系着同外界进程组的联系,那么current的
//退出将导致current进程组为孤儿进程组,那么就用POSIX的处理方式处理
if ((current->p_pptr->pgrp != current->pgrp) &&
(current->p_pptr->session == current->session) &&
is_orphaned_pgrp(current->pgrp) &&
has_stopped_jobs(current->pgrp))
{
kill_pg(current->pgrp,SIGHUP,1);
kill_pg(current->pgrp,SIGCONT,1);
}
//通知自己的父进程
notify_parent(current);
/*
* This loop does two things:
*
* A. Make init inherit all the child processes
* B. Check to see if any process groups have become orphaned
* as a result of our exiting, and if they have any stopped
* jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
*/
while ((p = current->p_cptr) != NULL) {
current->p_cptr = p->p_osptr; //p是current的子进程!
p->p_ysptr = NULL;
//让init进程收养current进程的所有的子进程
p->flags &= ~(PF_PTRACED|PF_TRACESYS);
if (task[1] && task[1] != current)
p->p_pptr = task[1];
else
p->p_pptr = task[0];
p->p_osptr = p->p_pptr->p_cptr;
p->p_osptr->p_ysptr = p;
p->p_pptr->p_cptr = p;
if (p->state == TASK_ZOMBIE) //也是僵死进程了
notify_parent(p);
//当current进程退出的时候,它们的子进程所在的进程组
//也有可能成为孤儿进程组的,同前面一样再操作一次!
if ((p->pgrp != current->pgrp) &&
(p->session == current->session) &&
is_orphaned_pgrp(p->pgrp) &&
has_stopped_jobs(p->pgrp)) {
kill_pg(p->pgrp,SIGHUP,1);
kill_pg(p->pgrp,SIGCONT,1);
}
}
if (current->leader) //进程组首领
disassociate_ctty(1); //如果有会话终端,就释放终端资源
if (last_task_used_math == current)
last_task_used_math = NULL; //呃,反正进程要结束了,不用保存协处理器信息了
#ifdef DEBUG_PROC_TREE
audit_ptree();
#endif
schedule();
goto fake_volatile;
} asmlinkage int sys_exit(int error_code)
{
do_exit((error_code&0xff)<<8);
} // The wait4 function suspends execution of the current process until a
// child as specified by the pid argument has exited, or until a signal is
// delivered whose action is to terminate the current process or to call a
// signal handling function. If a child as requested by pid has already
// exited by the time of the call (a so-called "zombie" process), the
// function returns immediately. Any system resources used by the child
// are freed.
asmlinkage int sys_wait4(pid_t pid,unsigned long * stat_addr, int options, struct rusage * ru)
{
int flag, retval;
struct wait_queue wait = { current, NULL };
struct task_struct *p; if (stat_addr) { //用来保存终止进程的状态
flag = verify_area(VERIFY_WRITE, stat_addr, 4);
if (flag)
return flag;
}
add_wait_queue(¤t->wait_chldexit,&wait);
repeat:
flag=0;
for (p = current->p_cptr ; p ; p = p->p_osptr) {
if (pid>0) { //指定进程
if (p->pid != pid)
continue;
} else if (!pid) { //当前进程组
if (p->pgrp != current->pgrp)
continue;
} else if (pid != -1) { //指定进程组
if (p->pgrp != -pid)
continue;
}
//else 全部的子进程
/* wait for cloned processes iff the __WCLONE flag is set */
if ((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
continue;
flag = 1;
switch (p->state) {
case TASK_STOPPED: //进程被挂起,因为被追踪或者收到了停止类的信号
if (!p->exit_code) //收到了停止类的信号而不是被追踪
continue;
if (!(options & WUNTRACED) && !(p->flags & PF_PTRACED)) //不被追踪
continue;
if (stat_addr) //拷贝信息
put_fs_long((p->exit_code << 8) | 0x7f,
stat_addr);
p->exit_code = 0; //清楚退出代码
if (ru != NULL)
getrusage(p, RUSAGE_BOTH, ru); //获得资源的利用信息
retval = p->pid;
goto end_wait4; //处理完毕,退出
case TASK_ZOMBIE: //呃,时间统计并加入到当前进程中
current->cutime += p->utime + p->cutime;
current->cstime += p->stime + p->cstime;
current->cmin_flt += p->min_flt + p->cmin_flt;
current->cmaj_flt += p->maj_flt + p->cmaj_flt;
if (ru != NULL)
getrusage(p, RUSAGE_BOTH, ru);
flag = p->pid;
if (stat_addr)
put_fs_long(p->exit_code, stat_addr); //注意这里的退出代码同上面的不同!
if (p->p_opptr != p->p_pptr) {
//如果进程的原始父进程同现在的父进程不同就不能释放资源
//此时将进程从队列中断开,然后设置为原始的父进程,再插入
//到链中,并通知父进程发送 SIGCHLD信号
REMOVE_LINKS(p);
p->p_pptr = p->p_opptr;
SET_LINKS(p);
notify_parent(p); //通知父进程
} else
release(p); //释放资源
#ifdef DEBUG_PROC_TREE
audit_ptree();
#endif
retval = flag;
goto end_wait4;
default:
continue;
}
}
//呃,这里说明有满足条件的进程,但是进程的状态不是停止或者僵死的状态
if (flag) {
retval = 0;
if (options & WNOHANG) //这个标志表示如果没有子进程处于退出或者停止
//状态就立即返回
goto end_wait4;
current->state=TASK_INTERRUPTIBLE;
schedule();
current->signal &= ~(1<<(SIGCHLD-1));
retval = -ERESTARTSYS;
if (current->signal & ~current->blocked)
goto end_wait4;
//如果该进程再次运行,说明是被别的信号唤醒了,这时候重新扫描
goto repeat;
}
retval = -ECHILD;
end_wait4:
remove_wait_queue(¤t->wait_chldexit,&wait);
return retval;
} asmlinkage int sys_waitpid(pid_t pid,unsigned long * stat_addr, int options)
{
return sys_wait4(pid, stat_addr, options, NULL);
}
文档地址:http://blogimg.chinaunix.net/blog/upfile2/090308130013.pdf
相关阅读 更多 +
排行榜 更多 +