文章详情

  • 游戏榜单
  • 软件榜单
关闭导航
热搜榜
热门下载
热门标签
php爱好者> php文档>将 Win32 C/C++ 应用程序迁移到 POWER 上的 Linu..

将 Win32 C/C++ 应用程序迁移到 POWER 上的 Linu..

时间:2008-11-19  来源:lixuewei97

级别: 初级

Nam Keung (mailto:[email protected]), 高级程序员, IBM 

2005 年 4 月 21 日

将您的 Win32 C/C++ 应用程序迁移到 POWER™ 上的 Linux™,并从信号(semaphore)应用程序接口(application program interface,API)的角度理解 Win32 到 Linux 的映射。Nam Keung 将通过详细的代码示例来为您描述这一过程。

介绍

本系列第三篇文章从信号的角度阐述了 Win32 C/++ 应用程序向 POWER 上的 Linux 的迁移。本系列的第 1 部分介绍了 Win32 API 映射,第 2 部分从互斥(mutex)API 的角度集中阐述了如何将 Win32 映射到 Linux。在继续阅读之前,建议您先去阅读本系列的第 1 部分和第 2 部分。





回页首


信号

信号是包含有一个正数的资源。信号允许进程通过一个单一的原子操作来测试和设置那个整数的值,以此实现同步。通常,信号的主要用途是同步某个线程与其他线程的动作。在多个进程竞争访问同一操作系统资源时,这也是协调或者同步那些行为的一种实用技术。

Linux 支持 Portable Operating System Interface(POSIX)信号以及 pthread 条件变量,以此来映射 Win32 信号 API。它们各有其优缺点。您应该基于应用程序的逻辑来判断使用哪种方法。在映射事件信号的过程中需要考虑的方面包括:

  • 信号的类型:Win32 既支持有名称的事件信号,也支持无名称的事件信号。有名称的信号是在多个进程间共享的。Linux 不支持这种方案。本文中列出的一个进程间通信(Inter-Process Communication,IPC)消息队列示例代码将向您展示如何来解决此问题。
  • 初始状态:在 Win32 中,信号可能会有初始值。在 Linux 中,POSIX 信号支持此功能,但 pthreads 不支持。在使用 pthreads 时您需要考虑到这一点。
  • 超时:Win32 事件信号支持定时等待。在 Linux 中,POSIX 信号实现只支持不确定的等待(阻塞)。pthreads 实现既支持阻塞也支持超时。pthread_cond_timedwait() 调用能给出等待期间的超时的值,pthread_cond_wait() 则用于不确定的等待。
  • 发信号:在 Win32 中,发出信号会唤醒等待那个信号的所有线程。在 Linux 中,POSIX 线程实现一次只唤醒一个线程。pthreads 实现的 pthread_cond_signal() 调用会唤醒一个线程,pthread_cond_broadcast() 调用会向所有等待那个信号的线程发出信号。

表 1. 信号映射表
Win32 pthread Linux POSIX
CreateSemaphore pthread_mutex_init(&(token)->mutex, NULL))
pthread_cond_init(&(token)->condition, NULL))
sem_init
CloseHandle (semHandle) pthread_mutex_destroy(&(token->mutex))
pthread_cond_destroy(&(token->condition))
sem_destroy
ReleaseSemaphore(semHandle, 1, NULL) pthread_cond_signal(&(token->condition)) sem_post
WaitForSingleObject(semHandle,
INFINITE)
WaitForSingleObject(semHandle,
timelimit)
pthread_cond_wait(&(token->condition),
&(token->mutex))
pthread_cond_timedwait(&(token
->condition), &(token->mutex))
sem_wait
sem_trywait




回页首


条件变量

条件变量让开发者能够实现一个条件,在这个条件下线程执行然后被阻塞。Microsoft® Win32 接口本身不支持条件变量。为解决此缺憾,我使用 POSIX 条件变量模拟同步原语,并在一系列文章中对此进行了概述。在 Linux 中,它可以确保因某条件被阻塞的线程,当那个条件改变时,会被解除阻塞。它还允许您原子地(atomically)解除互斥的锁定,并等待条件变量,而不会有干涉其他线程的可能。不过,每个条件变量都应该伴有一个互斥。前面的表 1 给出了用于线程间同步的 pthread 条件变量。





回页首


创建信号

在 Win32 中,CreateSemaphore 函数可以创建一个有名称的或者无名称的信号对象。Linux 不支持有名称的信号。


清单 1. 创建信号
HANDLE CreateSemaphore ( LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, LONG lInitialCount, LONG lMaximunCount, LPCTSTR lpName ); 

在 Linux 中,sem_init() 调用会创建一个 POSIX 信号:

清单 2. POSIX 信号

 int sem_init(sem_t *sem, int pshared, unsigned int value 

Linux 使用 pthread_condition_init 调用在当前进程内创建信号对象,在其中维持一个在零与最大值之间的计数值。每次有某个线程完成对信号的等待,这个计数值会减小,而每次当某个线程释放这个信号时,计数值增加。当计数值成为零时,信号对象的状态成为 non-signaled。

清单 3. 创建信号对象的 pthread_condition_init 调用

 int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr); 


清单 4. Win32 示例代码
 HANDLE semHandle; semHandle = CreateSemaphore(NULL, 0, 256000, NULL); /* Default security descriptor */ if( semHandle == (HANDLE) NULL) /* Semaphore object without a name */ { return RC_OBJECT_NOT_CREATED; } 


清单 5. 相应的 Linux 代码
 typedef struct { pthread_mutex_t mutex; pthread_cond_t condition; int semCount; }sem_private_struct, *sem_private; sem_private token; token = (sem_private) malloc(sizeof(sem_private_struct)); if(rc = pthread_mutex_init(&(token->mutex), NULL)) { free(token); return RC_OBJECT_NOT_CREATED; } if(rc = pthread_cond_init(&(token->condition), NULL)) { pthread_mutex_destroy( &(token->mutex) ); free(token); return RC_OBJECT_NOT_CREATED; } token->semCount = 0; 





回页首


销毁事件信号

Win32 使用 CloseHandle 来删除由 CreateSemaphore 所创建的信号对象。


清单 6. 销毁事件信号
BOOL CloseHandle (HANDLE hObject); 

Linux POSIX 信号使用 sem_destroy() 来销毁无名称的信号。


清单 7. sem_destroy()
 int sem_destroy(sem_t *sem);

在 Linux pthreads 中,使用 pthread_cond_destroy() 来销毁条件变量。

清单 8. pthread_cond_destroy()

 int pthread_cond_destroy(pthread_cond_t *cond);


清单 9. Win32 代码和相应的 Linux 代码
Win32 代码 相应的 Linux 代码
CloseHandle(semHandle); pthread_mutex_destroy(&(token->mutex));

pthread_cond_destroy(&(token->condition));

free (token);




回页首


发布事件信号

在 Win32 中,ReleaseSemaphore 函数会令指定的信号对象的计数值增加指定数量。

清单 10. ReleaseSemaphore 函数

 BOOL ReleaseSemaphore( HANDLE hSemaphore, LONG lReleaseCount, LPLONG lpPreviousCount ); 

Linux POSIX 信号使用 sem_post() 来发布事件信号。这将唤醒阻塞于此信号的所有线程。

清单 11. sem_post()

 int sem_post(sem_t * sem); 

在 Linux 中,pthread_cond_signal 会唤醒等待某个条件变更的某个线程。Linux 调用这个函数来为此对象所标识的信号发布一个事件完成信号。调用的线程增加那个信号的值。如果信号的值从零开始增加,而且 pthread_cond 中有任何线程被阻塞,那么请等待这个信号,因为其中一个会被唤醒。默认情况下,实现可以选择任意的正在等待的线程。

清单 12. pthread_cond_signal

 int pthread_cond_signal(pthread_cond_t *cond); 


清单 13. Win32 代码和相应的 Linux 代码
Win32 代码 相应的 Linux 代码
ReleaseSemaphore(semHandle, 1, NULL) if (rc = pthread_mutex_lock(&(token->mutex)))
return RC_SEM_POST_ERROR;

token->semCount ++;

if (rc = pthread_mutex_unlock(&(token->mutex)))
return RC_SEM_POST_ERROR;

if (rc = pthread_cond_signal(&(token->condition)))
return RC_SEM_POST_ERROR;




回页首


等待事件信号

Win32 调用 WaitForSingleObject 函数来等待所需要的信号上事件的完成。当等待单一线程同步对象时,可以使用此方法。当对象被设置发出信号或者超时时间段结束时,这个方法会得到通知。如果时间间隔是 INFINITE,那么它就会无止境地等待下去。

清单 14. WaitForSingleObject 函数

 DWORD WaitForSingleObject( HANDLE hHANDLE, DWORD dwMilliseconds ); 

使用 WaitForMultipleObjects 函数来等待多个被通知的对象。在信号线程同步对象中,当计数器变为零时,对象是 non-signaled。

清单 15. WaitForMultipleObjects 函数

 DWORD WaitForMultipleObjects( DWORD nCount, Const HANDLE* lpHandles, BOOL bWaitAll, DWORD dwMilliseconds ); 

Linux POSIX 信号使用 sem_wait() 来挂起发出调用的线程,直到信号拥有了非零的计数值。然后它自动地减少信号的计数值。

清单 16. sem_wait() 函数

 int sem_wait(sem_t * sem); 

在 POSIX 信号中不能使用超时选项。不过,您可以通过在某个循环中执行非阻塞的 sem_trywait() 来完成此功能,它会计算超时的值。

清单 17. sem_trywait() 函数

 int sem_trywait(sem_t * sem); 

在 Linux 中,pthread_cond_wait() 会阻塞发出调用的线程。发出调用的线程会减小那个信号。如果当 pthread_cond_wait 被调用时信号是零,则 pthread_cond_wait() 就会阻塞,直到另一个线程增加了那个信号的值。

清单 18. pthread_cond_wait() 函数

 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex); 

pthread_cond_wait 函数首先释放相关联的 external_mutex of type pthread_mutex_t,当调用者检查条件表达式时必须持有它。


清单 19. Win32 代码和相应的 Linux 代码
Win32 代码 相应的 Linux 代码
DWORD retVal;

retVal = WaitForSingleObject(semHandle, INFINITE);

if (retVal == WAIT_FAILED) return RC_SEM_WAIT_ERROR
if (rc = pthread_mutex_lock(&(token->mutex)))
return RC_SEM_WAIT_ERROR;

while (token->semCount <= 0)
{
rc = pthread_cond_wait(&(token->condition), &(token->mutex));
if (rc &&errno != EINTR )
break;
}
token->semCount--;

if (rc = pthread_mutex_unlock(&(token->mutex)))
return RC_SEM_WAIT_ERROR;

如果您需要在指定的一段时间内阻塞发出调用的线程,那么请使用 pthread_cond_timewait 来阻塞它。调用这个方法来等待所需要信号上某个事件的完成,等待指定的一段时间。


清单 20. pthread_cond_timewait
 int pthread_cond_timewait( pthread_cond_t *cond, pthread_mutex_t *mutex, timespec *tm ); 


清单 21. Win32 代码和相应的 Linux 代码
Win32 代码 相应的 Linux 代码
retVal = WaitForSingleObject(SemHandle, timelimit);

if (retVal == WAIT_FAILED)
return RC_SEM_WAIT_ERROR;

if (retVal == WAIT_TIMEOUT)
return RC_TIMEOUT;
int rc;
struct timespec tm;
struct timeb tp;
long sec, millisec;

if (rc = pthread_mutex_lock(&(token->mutex)))
return RC_SEM_WAIT_ERROR;

sec = timelimit / 1000;
millisec = timelimit % 1000;
ftime( &tp );
tp.time += sec;
tp.millitm += millisec;
if( tp.millitm > 999 )
{
tp.millitm -= 1000;
tp.time++;
}
tm.tv_sec = tp.time;
tm.tv_nsec = tp.millitm * 1000000 ;

while (token->semCount <= 0)
{
rc = pthread_cond_timedwait(&(token->condition), &(token->mutex), &tm);
if (rc && (errno != EINTR) )
break;
}
if ( rc )
{
if ( pthread_mutex_unlock(&(token->mutex)) )
return RC_SEM_WAIT_ERROR );

if ( rc == ETIMEDOUT) /* we have a time out */
return RC_TIMEOUT );

return RC_SEM_WAIT_ERROR );

}
token->semCount--;

if (rc = pthread_mutex_unlock(&(token->mutex)))
return RC_SEM_WAIT_ERROR;




回页首


POSIX 信号示例代码

清单 22 使用 POSIX 信号来实现线程 A 和 B 之间的同步:

清单 22. POSIX 信号示例代码

 sem_t sem; /* semaphore object */ int irc; /* return code */ /* Initialize the semaphore - count is set to 1*/ irc = sem_init (sem, 0,1) ... /* In Thread A */ /* Wait for event to be posted */ sem_wait (&sem); /* Unblocks immediately as semaphore initial count was set to 1 */ ....... /* Wait again for event to be posted */ sem_wait (&sem); /* Blocks till event is posted */ /* In Thread B */ /* Post the semaphore */ ... irc = sem_post (&sem); /* Destroy the semaphore */ irc = sem_destroy(&sem); 





回页首


进程内信号示例代码


清单 23. Win32 进程内信号示例代码
 #include <stdio.h> #include <stdlib.h> #include <windows.h> void thrdproc (void *data); // the thread procedure (function) to be executed HANDLE semHandle; int main( int argc, char **argv ) { HANDLE *threadId1; HANDLE *threadId2; int hThrd; unsigned stacksize; int arg1; if( argc < 2 ) arg1 = 7; else arg1 = atoi( argv[1] ); printf( "Intra Process Semaphor test.\n" ); printf( "Start.\n" ); semHandle = CreateSemaphore(NULL, 1, 65536, NULL); if( semHandle == (HANDLE) NULL) { printf("CreateSemaphore error: %d\n", GetLastError()); } printf( "Semaphor created.\n" ); if( stacksize < 8192 ) stacksize = 8192; else stacksize = (stacksize/4096+1)*4096; hThrd = _beginthread( thrdproc, // Definition of a thread entry NULL, stacksize, "Thread 1"); if (hThrd == -1) return RC_THREAD_NOT_CREATED); *threadId1 = (HANDLE) hThrd; hThrd = _beginthread( thrdproc, // Definition of a thread entry NULL, stacksize, “Thread 2"); if (hThrd == -1) return RC_THREAD_NOT_CREATED); *threadId2 = (HANDLE) hThrd; printf( "Main thread sleeps 5 sec.\n" ); sleep(5); if( ! ReleaseSemaphore(semHandle, 1, NULL) ) printf("ReleaseSemaphore error: %d\n", GetLastError()); printf( "Semaphor released.\n" ); printf( "Main thread sleeps %d sec.\n", arg1 ); sleep (arg1); if( ! ReleaseSemaphore(semHandle, 1, NULL) ) printf("ReleaseSemaphore error: %d\n", GetLastError()); printf( "Semaphor released.\n" ); printf( "Main thread sleeps %d sec.\n", arg1 ); sleep (arg1); CloseHandle(semHandle); printf( "Semaphor deleted.\n" ); printf( "Main thread sleeps 5 sec.\n" ); sleep (5); printf( "Stop.\n" ); return OK; } void thread_proc( void *pParam ) { DWORD retVal; printf( "\t%s created.\n", pParam ); retVal = WaitForSingleObject(semHandle, INFINITE); if (retVal == WAIT_FAILED) return RC_SEM_WAIT_ERROR; printf( "\tSemaphor blocked by %s. (%lx)\n", pParam, retVal); printf( "\t%s sleeps for 5 sec.\n", pParam ); sleep(5); if( ! ReleaseSemaphore(semHandle, 1, NULL) ) printf("ReleaseSemaphore error: %d\n", GetLastError()); printf( "\tSemaphor released by %s.)\n", pParam); } 


清单 24. 相应的 Linux 进程内信号示例代码
 #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> #include <errno.h> void thread_proc (void * data); pthread_mutexattr_t attr; pthread_mutex_t mutex; typedef struct { pthread_mutex_t mutex; pthread_cond_t condition; int semCount; }sem_private_struct, *sem_private; sem_private token; int main( int argc, char **argv ) { pthread_t threadId1; pthread_t threadId2; pthread_attr_t pthread_attr; pthread_attr_t pthread_attr2; int arg1; int rc; if( argc < 2 ) arg1 = 7; else arg1 = atoi( argv[1] ); printf( "Intra Process Semaphor test.\n" ); printf( "Start.\n" ); token =(sem_private) malloc (sizeof (sem_private_struct)); if(rc = pthread_mutex_init( &(token->mutex), NULL)) { free(token); return 1; } if(rc = pthread_cond_init(&(token->condition), NULL)) { printf( "pthread_condition ERROR.\n" ); pthread_mutex_destroy( &(token->mutex) ); free(token); return 1; } token->semCount = 0; printf( "Semaphor created.\n" ); if (rc = pthread_attr_init(&pthread_attr)) { printf( "pthread_attr_init ERROR.\n" ); exit; } if (rc = pthread_attr_setstacksize(&pthread_attr, 120*1024)) { printf( "pthread_attr_setstacksize ERROR.\n" ); exit; } if (rc = pthread_create(&threadId1, &pthread_attr, (void*(*)(void*))thread_proc, "Thread 1" )) { printf( "pthread_create ERROR.\n" ); exit; } if (rc = pthread_attr_init(&pthread_attr2)) { printf( "pthread_attr_init2 ERROR.\n" ); exit; } if (rc = pthread_attr_setstacksize(&pthread_attr2, 120*1024)) { printf( "pthread_attr_setstacksize2 ERROR.\n" ); exit; } if (rc = pthread_create(&threadId2, &pthread_attr2, (void*(*)(void*))thread_proc, "Thread 2" )) { printf( "pthread_CREATE ERROR2.\n" ); exit ; // EINVAL, ENOMEM } printf( "Main thread sleeps 5 sec.\n" ); sleep( 5 ); if (rc = pthread_mutex_lock(&(token->mutex))) { printf( "pthread_mutex_lock ERROR 1.\n" ); return 1; } token->semCount ++; if (rc = pthread_mutex_unlock&(token->mutex))) { printf( "pthread_mutex_unlock ERROR 1.\n" ); return 1; } if (rc = pthread_cond_signal(&(token->condition))) { printf( "pthread_cond_signal ERROR1.\n" ); return 1; } printf( "Semaphor released.\n" ); printf( "Main thread sleeps %d sec.\n", arg1 ); sleep( arg1 ); if (rc = pthread_mutex_lock(&(token->mutex))) { printf( "pthread_mutex_lock ERROR.\n" ); return 1; } token->semCount ++; if (rc = pthread_mutex_unlock(&(token->mutex))) { printf( "pthread_mutex_lock ERROR.\n" ); return 1; } if (rc = pthread_cond_signal(&(token->condition))) { printf( "pthread_cond_signal ERROR.\n" ); return 1; } printf( "Semaphor released.\n" ); printf( "Main thread sleeps %d sec.\n", arg1 ); sleep( arg1 ); pthread_mutex_destroy(&(token->mutex)); pthread_cond_destroy(&(token->condition)); printf( "Semaphor deleted.\n" ); printf( "Main thread sleeps 5 sec.\n" ); sleep( 5 ); printf( "Stop.\n" ); return 0; } void thread_proc( void *pParam ) { int rc; printf( "\t%s created.\n", pParam ); if (token == (sem_private) NULL) return ; if (rc = pthread_mutex_lock(&(token->mutex))) { printf( "pthread_mutex_lock ERROR2.\n" ); return ; } while (token->semCount <= 0) { rc = pthread_cond_wait(&(token->condition), &(token->mutex)); if (rc && errno != EINTR ) break; } if( rc ) { pthread_mutex_unlock(&(token->mutex)); printf( "pthread_mutex_unlock ERROR3.\n" ); return; } token->semCount--; if (rc = pthread_mutex_unlock(&(token->mutex))) { printf( "pthread_mutex_lock ERROR.\n" ); return ; } printf( "\tSemaphor blocked by %s. (%lx)\n", pParam, rc ); printf( "\t%s sleeps for 5 sec.\n", pParam ); sleep( 5 ); if (rc = pthread_mutex_lock(&(token->mutex))) { printf( "pthread_mutex_lock ERROR.\n" ); return ; } token->semCount ++; if (rc = pthread_mutex_unlock(&(token->mutex))) { printf( "pthread_mutex_unlock ERROR.\n" ); return ; } if (rc = pthread_cond_signal(&(token->condition))) { printf( "pthread_cond_signal ERROR.\n" ); return ; } printf( "\tSemaphor released by %s. (%lx)\n", pParam, rc ); 





回页首


进程间信号示例代码


清单 25. Win32 进程间信号示例代码,进程 1
 #include <stdio.h> #include <windows.h> #define WAIT_FOR_ENTER printf( "Press ENTER\n" );getchar() int main() { HANDLE semaphore; int nRet; DWORD retVal; SECURITY_ATTRIBUTES sec_attr; printf( "Inter Process Semaphore test - Process 1.\n" ); printf( "Start.\n" ); sec_attr.nLength = sizeof( SECURITY_ATTRIBUTES ); sec_attr.lpSecurityDescriptor = NULL; sec_attr.bInheritHandle = TRUE; semaphore = CreateSemaphore( &sec_attr, 1, 65536, “456789" ); if( semaphore == (HANDLE) NULL ) return RC_OBJECT_NOT_CREATED; printf( "Semaphore created. (%lx)\n", nRet ); WAIT_FOR_ENTER; if( ! ReleaseSemaphore(semaphore, 1, NULL) ) return SEM_POST_ERROR; printf( "Semaphore Posted. \n"); WAIT_FOR_ENTER; retVal = WaitForSingleObject (semaphore, INFINITE ); if (retVal == WAIT_FAILED) return SEM_WAIT_ERROR; printf( "Wait for Semaphore. \n"); WAIT_FOR_ENTER; CloseHandle (semaphore); printf( "Semaphore deleted.\n" ); printf( "Stop.\n" ); return 0; } 

清单 26 给出了作为支持进程间共享的有名称信号示例的消息 IPC 代码。


清单 26. 相应的 Linux 进程间信号示例代码,进程 1
 #include <stdio.h> #include <sys/types.h> #include <sys/sem.h> #include <sys/stat.h> #include <errno.h> #include <unistd.h> #define WAIT_FOR_ENTER printf( "Press ENTER\n" );getchar() struct msgbuf { long mtype; /* type of message */ char mtext[1]; /* message text */ }; int main() { key_t msgKey; int flag; struct msgbuf buff; int sem; int nRet =0; printf( "Inter Process Semaphore test - Process 1.\n" ); printf( "Start.\n" ); flag = IPC_CREAT|IPC_EXCL; if( ( msgKey = (key_t) atol( "456789" ) ) <= 0 ) return 1; flag |= S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP; sem = (int) msgget( msgKey, flag ); if (sem == -1) if( errno == EEXIST ) { flag &= ~IPC_EXCL; sem = (int) msgget( msgKey, flag ); if (msgctl(sem, IPC_RMID, NULL ) != 0) return 1; sem = (int) msgget( msgKey, flag ); if (sem == -1) return 1; } else return 1; printf( "Semaphore created. \n" ); WAIT_FOR_ENTER; buff.mtype = 123; if( msgsnd( sem, &buff, 1, 0 ) < 0 ) return 1; printf( "Semaphore Posted. \n" ); WAIT_FOR_ENTER; if( msgrcv( sem, &buff, 1, 0, 0 ) < 0 ) return 1; printf( "Wait for Semaphore. \n" ); WAIT_FOR_ENTER; msgctl(sem, 0, IPC_RMID ); printf( "Semaphore deleted.\n" ); printf( "Stop.\n" ); return 0; } 


清单 27. Win32 进程间信号示例代码,进程 2
 #include <stdio.h> #include <windows.h> int main() { HANDLE semaphore; DWORD retVal; printf( "Inter Process Semaphore test - Process 2.\n" ); printf( "Start.\n" ); SECURITY_ATTRIBUTES sec_attr; sec_attr.nLength = sizeof( SECURITY_ATTRIBUTES ); sec_attr.lpSecurityDescriptor = NULL; sec_attr.bInheritHandle = TRUE; semaphore = CreateSemaphore( &sec_attr, 0, 65536, “456789" ); if( semaphore == (HANDLE) NULL ) return RC_OBJECT_NOT_CREATED; printf( "Semaphore opened. (%lx)\n", nRet ); printf( "Try to wait for semaphore.\n" ); while( ( retVal = WaitForSingleObject( semaphore, 250 ) ) == WAIT_TIMEOUT) printf( "Timeout. \n"); printf( "Semaphore acquired. \n"); printf( "Try to post the semaphore.\n" ); if( ! ReleaseSemaphore(semaphore, 1, NULL) ) return RC_SEM_POST_ERROR; printf( "Semaphore posted. \n"); CloseHandle(semaphore); printf( "Semaphore closed. \n"); printf( "Stop.\n" ); return 0; } 


清单 28. 相应的 Linux 进程间信号示例代码,进程 2
 #include <stdio.h> #include <sys/time.h> #include <sys/types.h> #include <sys/sem.h> #include <sys/stat.h> #include <errno.h> #include <unistd.h> #define RC_TIMEOUT = 3 struct msgbuf { long mtype; /* type of message */ char mtext[1]; /* message text */ }; int main() { key_t msgKey; int flag=0; struct msgbuf buff; int sem; int nRet =0; printf( "Inter Process Semaphore test - Process 2.\n" ); printf( "Start.\n" ); if( ( msgKey = (key_t) atol( "456789" ) ) <= 0 ) return 1; flag |= S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP; sem = (int) msgget( msgKey, flag ); if (sem == -1) if( errno == EEXIST ) { flag &= ~IPC_EXCL; sem = (int) msgget( msgKey, flag ); if (msgctl(sem, IPC_RMID, NULL ) != 0) return 1; sem = (int) msgget( msgKey, flag ); if (sem == -1) return 1; } else return 1; printf( "Semaphore opened. (%lx)\n", nRet ); if( nRet != 0 ) return 0; printf( "Try to wait for semaphore.\n" ); while( ( nRet = sem_shared_wait_timed( sem, 250 ) ) == 3) printf( "Timeout. (%lx)\n", nRet ); printf( "Semaphore acquired. (%lx)\n", nRet ); printf( "Try to post the semaphore.\n" ); buff.mtype = 123; if( msgsnd( sem, &buff, 1, 0 ) < 0 ) return 1; printf( "Semaphore posted. (%lx)\n", nRet ); if( nRet != 0 ) return 0; printf( "Semaphore closed. (%lx)\n", nRet ); printf( "Stop.\n" ); return 0; } int sem_shared_wait_timed( int sem, unsigned long timelimit) { struct msgbuf buff; struct timeval timeOut; int msg[1]; int nRet=0; timeOut.tv_sec = timelimit / 1000; timeOut.tv_usec = (timelimit % 1000) * 1000; msg[0] = sem; nRet = select( 0x1000, (fd_set *)msg, NULL, NULL, &timeOut ); if(nRet == 0) return 3; if( msgrcv( sem, &buff, 1, 0, 0 ) < 0 ) return 1; } 





回页首


结束语

本系列的第三篇文章从信号 API 的角度讲述了从 Win32 到 Linux 的映射,并给出了您可以引用的信号示例代码。线程化的、同步的系统所提出的挑战不仅是设计与实现,也包括了质量保证的所有阶段。当进行从 Win32 到 Linux 的迁移时,可以将这些文章做为参考。一定要去阅读本系列中以前的文章。

补充声明

Microsoft、Windows、Windows NT 和 Windows 徽标是 Microsoft Corporation 在美国和/或其他国家或地区的商标或注册商标。

Intel、Intel Inside(logos)、MMX 和 Pentium 是 Intel 公司在美国和/或其他国家或地区的商标。

UNIX 是 The Open Group 在美国和其他国家或地区的注册商标。

Linux 是 Linus Torvalds 在美国和/或其他国家或地区的商标。



参考资料



关于作者

Nam Keung 是 IBM 的一名高级程序员,他曾致力于 AIX 通信开发、AIX 多媒体、SOM/DSOM 开发和 Java 性能方面的工作。他目前的工作包括帮助独立软件提供商(Independent Software Vendors,ISV)进行应用程序设计、部署应用程序、性能调优和关于 pSeries 平台的教育。您可以通过 [email protected] 与 Nam 联系。

相关阅读 更多 +
排行榜 更多 +
辰域智控app

辰域智控app

系统工具 下载
网医联盟app

网医联盟app

运动健身 下载
汇丰汇选App

汇丰汇选App

金融理财 下载