文章详情

  • 游戏榜单
  • 软件榜单
关闭导航
热搜榜
热门下载
热门标签
php爱好者> php文档>单步QR方法计算上Hessenberg矩阵特征值的Python实现

单步QR方法计算上Hessenberg矩阵特征值的Python实现

时间:2008-11-15  来源:taoyuliang

      刚开通博客,把今晚写的一个Python程序传了上来。
      这个类实现了用单步QR分解来计算上Hessenberg矩阵的全部特征值。QR方法是一种计算一般矩阵(中小型矩阵)全部特征值问最有效的方法之一。在很多数值分析的书本上都有该算法的说明,所以在这里不慢慢解释。
      其中,在import中代入的几个模块Matrix,Househoulder和Hessenberg,均是用Python实现的几个类,在后续几篇博客中,我将慢慢介绍这些类。 

  1 #!/usr/bin/python
  2
  3 ################################################################
  4 # Filename : eigenvalueQR.py
  5 # Compute the eigenvalue of a matrix with QR method
  6 ################################################################
  7
  8 # import
  9 from copy import deepcopy
 10 from matrix import Matrix
 11 from householder import Householder
 12 from hessenberg  import Hessenberg
 13
 14 ################################################################
 15 #============= CLASS EIGENVALUEQR DEFINITION BEGIN ============#
 16 ################################################################
 17 class EigenvalueQR :
 18     """Compute the eigenvalue of a matrix with QR decomposition"""
 19
 20     def __init__( self, matrix, eps = None ) :
 21         """Constructor of class"""
 22
 23         # matrix is must be a squre matrix
 24         if not matrix.isSquareMatrix() :
 25             raise Exception, "Square matrix is required"
 26             return
 27         
 28         self.__n = matrix.getdimRow()
 29         
 30         # define the precision
 31         if eps :
 32             self.__eps = eps
 33         else :
 34             self.__eps = 0.0001
 35
 36         # Judge if matrix is a upper hessenberg matrix
 37         # If not, implement the hessenberg transfromation
 38         flag = self._isHessenbergMatrix( matrix )
 39         # is not a irreducible hessenberg matrix
 40         if flag == 1 :
 41             raise Exception, "Must be irreducible Hessenberg Matrix"
 42             return
 43         # is not a upper hessenberg matrix
 44         elif flag == 0 :
 45             hb = Hessenberg( matrix )
 46             self.__H = hb.getH()
 47         # is a irreducible upper hessenberg matrix
 48         else :
 49             self.__H = deepcopy( matrix )
 50
 51         # now the H is a irreducible upper hessenberg matrix
 52         # we can implement QR decomposition
 53         # control the condition for termination
 54         iterator = self.__n - 1
 55         subH = self.__H
 56         self.__eigenvalues = []
 57
 58         while iterator :
 59             # one step QR mwthod
 60             eigenv, subH = self._onestepQR( subH )
 61             self.__eigenvalues.append( eigenv )
 62             iterator -= 1
 63         
 64         # get the last eigenvalue
 65         self.__eigenvalues.append( subH[0][0] )
 66         
 67
 68     #-----------------------------------------------------#
 69     # Define utility methods of class
 70     #-----------------------------------------------------#
 71     def _isHessenbergMatrix( self, A ) :
 72         """Judge if A is a hessenberg matrix"""
 73
 74         dim = A.getdimRow()
 75         
 76         for i in range( 2, dim ) :
 77             for j in range( i-1 ) :
 78                 # must be hessenberg matrix
 79                 if A[i][j] != 0 :
 80                     return 0
 81
 82         for i in range( 1, dim ) :
 83             # must be irreducible hessenberg matrix
 84             if A[i][i-1] == 0 :
 85                     return 1
 86
 87         return 2
 88
 89     def _onestepQR( self, matrix ) :
 90         """Compute the upper hessenberg matrix's eigenvalue
 91         with onw step QR method"""
 92
 93         #-------------------------------------------------
 94         # Argorithm :
 95         #-------------------------------------------------
 96         # H[k] - s[k] * I = Q[k] * R[k]
 97         # H[k+1] = R[k] * Q[k] + s[k] * I
 98         #-------------------------------------------------
 99         H = deepcopy(matrix)
100
101         dim = H.getdimRow()
102         n = dim - 1
103
104         while 1 :
105             # construct H[k] - s[k] * I
106             # get s[k]
107             sk = H[n][n]
108             offset = self._genDiagMatrix( dim, sk )
109             H -= offset
110
111             # implement QR decomposition for H
112             hh = Householder( H )
113             Q = hh.getQ()
114             R = hh.getR()
115
116             # update H : H[k+1] = R * Q + s[k] * I
117             H = R * Q + offset
118
119             #
120             if H[n][n-1] < self.__eps :
121                 print "H:\n", H
122                 break
123             else :
124                 print "H:\n", H
125
126         return ( H[n][n], H.getSubMatrix(1,n,1,n) )
127
128
129     def _genDiagMatrix( self, dim, k = None ) :
130         """Generate a diag matrix. If k is None, then
131         generate a unit matrix"""
132
133         I = Matrix( dim, dim )
134         cons = 1.0
135         if k :
136             cons = k
137
138         for i in range( dim ) :
139             I[i][i] = cons
140
141         return I
142
143
144     #-----------------------------------------------------#
145     # Define user interface methods of class
146     #-----------------------------------------------------#
147     def getEigenvalues( self ) :
148         """Return the list of all eigenvalues"""
149
150         return self.__eigenvalues
151
152     def getDimension( self ) :
153         """Return the dimension of matrix"""
154
155         return self.__n
156
157     def getEpsilon( self ) :
158         """Return the required precision epsilon"""
159
160         return self.__eps
161
162
163 ################################################################
164 #============== CLASS EIGENVALUEQR DEFINITION END =============#
165 ################################################################
166 def main() :
167     """Test"""
168
169     data = [ [ 2,  1,  0],
170              [ 1,  3,  1],
171              [ 0,  1,  4] ]
172
173     H = Matrix( 3, 3, data )
174     print "Original matrix: "
175     print H
176     print
177
178     qr = EigenvalueQR( H )
179     values = qr.getEigenvalues()
180     print "Eigenvalues : "
181     for i in range( len(values) ) :
182         print "%8f" % values[i]
183
184     print
185
186 ################################################################
187 if __name__ == '__main__' :
188     main()
189
相关阅读 更多 +
排行榜 更多 +
辰域智控app

辰域智控app

系统工具 下载
网医联盟app

网医联盟app

运动健身 下载
汇丰汇选App

汇丰汇选App

金融理财 下载